1
|
Di Marcantonio C, Mangiagli F, Boni MR, Bartolucci J, Bongirolami S, Romano R, Martelli A, Rapinesi D, Altobelli F, Chiavola A. Are we ready for the application of the EU regulation on wastewater reuse in agriculture? A tecno-economic preliminary evaluation based on a case-study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123973. [PMID: 39742769 DOI: 10.1016/j.jenvman.2024.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Reuse of reclaimed wastewater (RWW) in agriculture represents one of the key strategies to promote for reducing the pressures on water sources, as also fostered by the EU governance. Indeed, the European Regulation 741/2020 on water reuse, entered into force in 2023, was issued with the aim to extend the reuse of treated water in agriculture under safe conditions. It establishes the minimum quality requirements; it also foresees the possibility to add additional requirements, especially for contaminants of emerging concern (CECs), based on "scientific evidence" and the risk assessment. The present study aims at evaluating from both the technical and economic points of view the potential reuse of RWW for irrigating edible crops in a real case study, considering the requirements set by the EU Regulation 741/2020. The Rieti province in the Lazio region of Italy was selected as the case study, since its territory is devoted to agricultural activities which have an important economic impact (e.g. olive trees, potatoes and maize). Firstly, the wastewater treatment plants (WWTPs) here located were classified based upon the quality of the water produced with respect to the classes listed by the EU Regulation. Then, the nutrients and water demand of the crops grown in the same area were compared with the nutrients and water potentially available through the RWW from the WWTPs. Furthermore, a preliminary assessment was carried out considering only four selected CECs present in the RWW produced by the WWTPs. Combining the quality requirements set by EU Regulation and the results of the preliminary risk assessment, in the investigated territory, there are 17 WWTPs potentially suitable for the irrigation of maize, only 1 plant for potato and 8 plants for olive.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Building and Environmental Engineering, Rome, Italy.
| | - Francesca Mangiagli
- Sapienza University of Rome, Department of Civil, Building and Environmental Engineering, Rome, Italy
| | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Building and Environmental Engineering, Rome, Italy
| | | | | | | | - Andrea Martelli
- CREA Research Centre for Agricultural Policies and Bioeconomy, Rome, Via Barberini 36, Italy
| | - Davide Rapinesi
- CREA Research Centre for Agricultural Policies and Bioeconomy, Rome, Via Barberini 36, Italy
| | - Filiberto Altobelli
- CREA Research Centre for Agricultural Policies and Bioeconomy, Rome, Via Barberini 36, Italy
| | - Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Building and Environmental Engineering, Rome, Italy
| |
Collapse
|
2
|
Choi S, Lee W, Son H, Lee W, Choi Y, Yeom H, Seo C, Lee H, Lee Y, Lim SJ, Chae SH, Park HK, Hong SW, Kim YM, Lee Y. Occurrence, removal, and prioritization of organic micropollutants in four full-scale wastewater treatment plants in Korea. CHEMOSPHERE 2024; 361:142460. [PMID: 38821128 DOI: 10.1016/j.chemosphere.2024.142460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the occurrence, removal rate, and potential risks of 43 organic micropollutants (OMPs) in four municipal wastewater treatment plants (WWTPs) in Korea. Results from two-year intensive monitoring confirmed the presence of various OMPs in the influents, including pharmaceuticals such as acetaminophen (pain relief), caffeine (stimulants), cimetidine (H2-blockers), ibuprofen (non-steroidal anti-inflammatory drugs- NSAIDs), metformin (antidiabetics), and naproxen (NSAIDs) with median concentrations of >1 μg/L. Some pharmaceuticals (carbamazepine-anticonvulsants, diclofenac-NSAIDs, propranolol-β-blockers), corrosion inhibitors (1H-benzotriazole-BTR, 4-methyl-1H-benzotriazole-4-TTR), and perfluorinated compounds (PFCs) were negligibly removed during WWTP treatment. The OMP concentrations in the influents and effluents were mostly lower in August than those of other months (p-value <0.05) possibly due to wastewater dilution by high precipitation or enhanced biodegradation under high-temperature conditions. The anaerobic-anoxic-oxic process (A2O) with a membrane bioreactor exhibited higher OMP removal than other processes, such as A2O with sedimentation or the conventional activated sludge process (p-value <0.05). Pesticides (DEET and atrazine), corrosion inhibitors (4-TTR and BTR), and metformin were selected as priority OMPs in toxicity-driven prioritization, whereas PFCs were determined as priority OMPs given their persistence and bioaccumulation properties. Overall, our results contribute to an important database on the occurrence, removal, and potential risks of OMPs in Korean WWTPs.
Collapse
Affiliation(s)
- Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Woorim Lee
- Environment and Energy Research Laboratory, Research Institute of Industrial Science and Technology (RIST), Pohang, Gyeongbuk, 37673, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hoonsik Yeom
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Changdong Seo
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Hyejin Lee
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Yujin Lee
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Seung Ji Lim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong Ki Park
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
3
|
Zhang G, Zhang C, Liu J, Zhang Y, Fu W. Occurrence, fate, and risk assessment of antibiotics in conventional and advanced drinking water treatment systems: From source to tap. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120746. [PMID: 38593734 DOI: 10.1016/j.jenvman.2024.120746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The occurrence and removal of 38 antibiotics from nine classes in two drinking water treatment plants (WTPs) were monitored monthly over one year to evaluate the efficiency of typical treatment processes, track the source of antibiotics in tap water and assess their potential risks to ecosystem and human health. In both source waters, 18 antibiotics were detected at least once, with average total antibiotic concentrations of 538.5 ng/L in WTP1 and 569.3 ng/L in WTP2. The coagulation/flocculation and sedimentation, sand filtration and granular activated carbon processes demonstrated limited removal efficiencies. Chlorination, on the other hand, effectively eliminated antibiotics by 48.7 ± 11.9%. Interestingly, negative removal was observed along the distribution system, resulting in a significant antibiotic presence in tap water, with average concentrations of 131.5 ng/L in WTP1 and 362.8 ng/L in WTP2. Source tracking analysis indicates that most antibiotics in tap water may originate from distribution system. The presence of antibiotics in raw water and tap water posed risks to the aquatic ecosystem. Untreated or partially treated raw water could pose a medium risk to infants under six months. Water parameters, for example, temperature, total nitrogen and total organic carbon, can serve as indicators to estimate antibiotic occurrence and associated risks. Furthermore, machine learning models were developed that successfully predicted risk levels using water quality parameters. Our study provides valuable insights into the occurrence, removal and risk of antibiotics in urban WTPs, contributing to the broader understanding of antibiotic pollution in water treatment systems.
Collapse
Affiliation(s)
- Guorui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chao Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Yixiang Zhang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Wenjie Fu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
4
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
5
|
Vidal B, Kinnunen J, Hedström A, Heiderscheidt E, Rossi P, Herrmann I. Treatment efficiency of package plants for on-site wastewater treatment in cold climates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118214. [PMID: 37311345 DOI: 10.1016/j.jenvman.2023.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Package plants (PP) are implemented around the world to provide on-site sanitation in areas not connected to a sewage network. The efficiency of PP has not been comprehensively studied at full scale, and the limited number of available studies have shown that their performance varies greatly. Their performance under cold climate conditions and the occurrence of micropollutants in PP effluents have not been sufficiently explored. PP are exposed to environmental factors such as low temperature, especially in cold regions with low winter temperatures and deep frost penetration, that can adversely influence the biochemical processes. The aim of this study was to investigate the treatment efficiency and possible effects of cold temperatures on PP performance, with focus on traditional contaminants (organics, solids, nutrients and indicator bacteria) and an additional assessment of micropollutants on two PP. Eleven PP hosting different treatment processes were monitored. Removal of biological oxygen demand (BOD) was high in all plants (>91%). Six out of the 11 PP provided good phosphorus removal (>71%). Small degrees of nitrification were observed in almost all the facilities, despite the low temperatures, while denitrification was only observed in two plants which achieved the highest nitrification rates (>51%) and had sludge recirculation. No strong correlation between wastewater temperature and BOD, nutrients and indicator bacteria concentration in the effluents was found. The high data variability and the effects of other process parameters as well as snow-melt water infiltration are suggested as possible reasons for the lack of correlation. However, weak negative relations between effluent concentrations and wastewater temperatures were detected in specific plants, indicating that temperature does have effects. When managed adequately, package plants can provide high BOD and phosphorus removal, but nitrogen and bacteria removal remain challenging, especially at low temperatures. Pharmaceutical compounds were detected in the effluents at concentrations within or above ranges reported for large treatment plants while phthalate ester concentrations were below commonly reported effluent concentrations.
Collapse
Affiliation(s)
- Brenda Vidal
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87, Sweden.
| | - Juho Kinnunen
- Water, Energy and Environmental Engineering Research Facility, Faculty of Technology, 90014, University of Oulu, Finland
| | - Annelie Hedström
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87, Sweden
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering Research Facility, Faculty of Technology, 90014, University of Oulu, Finland
| | - Pekka Rossi
- Water, Energy and Environmental Engineering Research Facility, Faculty of Technology, 90014, University of Oulu, Finland
| | - Inga Herrmann
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87, Sweden
| |
Collapse
|
6
|
Verlicchi P, Grillini V, Lacasa E, Archer E, Krzeminski P, Gomes AI, Vilar VJP, Rodrigo MA, Gäbler J, Schäfer L. Selection of indicator contaminants of emerging concern when reusing reclaimed water for irrigation - A proposed methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162359. [PMID: 36822429 DOI: 10.1016/j.scitotenv.2023.162359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Organic and microbial contaminants of emerging concern (CECs), even though not yet regulated, are of great concern in reclaimed water reuse projects. Due to the large number of CECs and their different characteristics, it is useful to include only a limited number of them in monitoring programs. The selection of the most representative CECs is still a current and open question. This study presents a new methodology for this scope, in particular for the evaluation of the performance of a polishing treatment and the assessment of the risk for the environment and the irrigated crops. As to organic CECs, the methodology is based on four criteria (occurrence, persistence, bioaccumulation and toxicity) expressed in terms of surrogates (respectively, concentrations in the secondary effluent, removal achieved in conventional activated sludge systems, Log Kow and predicted-no-effect concentration). It consists of: (i) development of a dataset including the CECs found in the secondary effluent, together with the corresponding values of surrogates found in the literature or by in-field investigations; (ii) normalization step with the assignment of a score between 1 (low environmental impact) and 5 (high environmental impact) to the different criteria based on threshold values set according to the literature and experts' judgement; (iii) CEC ranking according to their final score obtained as the sum of the specific scores; and (iv) selection of the representative CECs for the different needs. Regarding microbial CECs, the selection is based on their occurrence and their highest detection frequency in the secondary effluent and in the receiving water, the antibiotic consumption patterns, and recommendations by national and international organisations. The methodology was applied within the ongoing reuse project SERPIC resulting in a list of 30 indicator CECs, including amoxicillin, bisphenol A, ciprofloxacin, diclofenac, erythromycin, ibuprofen, iopromide, perfluorooctane sulfonate (PFOS), sulfamethoxazole, tetracycline, Escherichia coli, faecal coliform, 16S rRNA, sul1, and sul2.
Collapse
Affiliation(s)
- P Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44121 Ferrara, Italy.
| | - V Grillini
- Department of Engineering, University of Ferrara, Via Saragat 1, 44121 Ferrara, Italy.
| | - E Lacasa
- Department of Chemical Engineering, University of Castilla-La Mancha, Campus Universitario s/n, Albacete, 02071, Spain.
| | - E Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - P Krzeminski
- Norwegian Institute for Water Research (NIVA), Urban Environments and Infrastructure Section, Økernveien 94, N-0579 Oslo, Norway.
| | - A I Gomes
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - V J P Vilar
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - M A Rodrigo
- Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, Ciudad Real, Spain.
| | - J Gäbler
- Fraunhofer Institute for Surface Engineering and Thin Films IST, 38108 Braunschweig, Germany.
| | - L Schäfer
- Fraunhofer Institute for Surface Engineering and Thin Films IST, 38108 Braunschweig, Germany.
| |
Collapse
|