1
|
Magrini C, Verga F, Bassani I, Pirri CF, Abdel Azim A. A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals. Bioengineering (Basel) 2025; 12:101. [PMID: 40001621 PMCID: PMC11852156 DOI: 10.3390/bioengineering12020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
End-of-life (EoL) mobile phones represent a valuable reservoir of critical raw materials at higher concentrations compared to primary ores. This review emphasizes the critical need to transition from single-material recovery approaches to comprehensive, holistic strategies for recycling EoL mobile phones. In response to the call for sustainable techniques with reduced energy consumption and pollutant emissions, biohydrometallurgy emerges as a promising solution. The present work intends to review the most relevant studies focusing on the exploitation of microbial consortia in bioleaching and biorecovery processes. All living organisms need macro- and micronutrients for their metabolic functionalities, including some of the elements contained in mobile phones. By exploring the interactions between microbial communities and the diverse elements found in mobile phones, this paper establishes a microbial-centric perspective by connecting each element of each layer to their role in the microbial cell system. A special focus is dedicated to the concepts of ecodesign and modularity as key requirements in electronics to potentially increase selectivity of microbial consortia in the bioleaching process. By bridging microbial science with sustainable design, this review proposes an innovative roadmap to optimize metal recovery, aligning with the principles of the circular economy and advancing scalable biotechnological solutions for electronic waste management.
Collapse
Affiliation(s)
- Chiara Magrini
- Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), 10129 Turin, Italy; (C.M.); (F.V.)
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
| | - Francesca Verga
- Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), 10129 Turin, Italy; (C.M.); (F.V.)
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), 10129 Turin, Italy
| | - Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), 10129 Turin, Italy
| |
Collapse
|
2
|
Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Yadav VK, Niazi P, Kumar P, Alghamdi S. A Comprehensive Review of the Diversity of Fungal Secondary Metabolites and Their Emerging Applications in Healthcare and Environment. MYCOBIOLOGY 2024; 52:335-387. [PMID: 39845176 PMCID: PMC11749308 DOI: 10.1080/12298093.2024.2416736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 01/24/2025]
Abstract
Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents. Nowadays, these fungal-derived SMs are widely used in food and beverages, for fermentation, preservatives, protein sources, and in dairy industries. In healthcare, it is being used as an antimicrobial, anticancer, anti-inflammatory, and immunosuppressive drug. The usage of modern tools of biotechnology can achieve an increase in demand for these SMs and large-scale production. The present review comprehensively analyses the diversity of fungal SMs along with their emerging applications in healthcare, agriculture, environmental sustainability, and nutraceuticals. Here, the authors have reviewed the recent advancements in genetic engineering, metabolic pathway manipulation, and synthetic biology to improve the production and yield of these SMs. Advancement in fermentation techniques, bioprocessing, and co-cultivation approaches for large-scale production of SMs. Investigators further highlighted the importance of omics technologies in understanding the regulation and biosynthesis of SMs, which offers an understanding of novel applications in drug discovery and sustainable agriculture. Finally, the authors have addressed the potential for genetic manipulation and biotechnological innovations for further exploitation of fungal SMs for commercial and environmental benefits.
Collapse
Affiliation(s)
- Khushbu Wadhwa
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Neha Kapoor
- Department of Chemistry, Hindu College, University of Delhi, Delhi, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Eman A. Abu-Seer
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohd. Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Gupta VK, Peng W, Lam SS, Tabatabaei M, Aghbashlo M. Driving sustainable circular economy in electronics: A comprehensive review on environmental life cycle assessment of e-waste recycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123081. [PMID: 38072018 DOI: 10.1016/j.envpol.2023.123081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.
Collapse
Affiliation(s)
- Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | | | | | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom; Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
4
|
Vo PHN, Danaee S, Hai HTN, Huy LN, Nguyen TAH, Nguyen HTM, Kuzhiumparambil U, Kim M, Nghiem LD, Ralph PJ. Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168210. [PMID: 37924876 DOI: 10.1016/j.scitotenv.2023.168210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Rare earth elements (REEs) are essential for advanced manufacturing (e.g., renewable energy, military equipment, electric vehicles); hence, the recovery of REEs from low-grade resources has become increasingly important to address their growing demand. Depending on specific mining sites, its geological conditions, and sociodemographic backgrounds, mining waste has been identified as a source of REEs in various concentrations and abundance. Yttrium, cerium, and neodymium are the most common REEs in mining waste streams (50 to 300 μg/L). Biomining has emerged as a viable option for REEs recovery due to its reduced environmental impact, along with reduced capital investment compared to traditional recovery methods. This paper aims to review (i) the characteristics of mining waste as a low-grade REEs resource, (ii) the key operating principles of biomining technologies for REEs recovery, (iii) the effects of operating conditions and matrix on REEs recovery, and (iv) the sustainability of REEs recovery through biomining technologies. Six types of biomining will be examined in this review: bioleaching, bioweathering, biosorption, bioaccumulation, bioprecipitation and bioflotation. Based on a SWOT analyses and techno-economic assessments (TEA), biomining technologies have been found to be effective and efficient in recovering REEs from low-grade sources. Through TEA, coal ash has been shown to return the highest profit amongst mining waste streams.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Soroosh Danaee
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology, Klongluang, Pathumthani, Thailand
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland 4102, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Trivedi A, Hait S. Fungal bioleaching of metals from WPCBs of mobile phones employing mixed Aspergillus spp.: Optimization and predictive modelling by RSM and AI models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119565. [PMID: 37976642 DOI: 10.1016/j.jenvman.2023.119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/23/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
In the present study, optimization and prediction models for fungal bioleaching for effective metal extraction from waste printed circuit boards (WPCBs) of mobile phones were developed employing central composite design (CCD) of response surface methodology (RSM), and two artificial intelligence (AI) models, i.e., artificial neural network (ANN) and, support vector machine (SVM), respectively. Two continuous process parameters, such as pH (4-9) and pulp density (1-10 g/L), and the bioleaching approaches, viz., one-step and two-step, were experimentally optimized for the extraction of targeted metals, i.e., Cu, Ni, and Zn from WPCBs by mixed cultures of Aspergillus niger and Aspergillus tubingensis. Datasets were then used for predictive modelling using AI tools. Results showed that the highest simultaneous bioleaching of Cu, Ni, and Zn, with an extraction efficacy of about 86%, 51%, and 100%, respectively, achieved at an optimal condition of pH 5.7 and pulp density of 3 g/L following the two-step bioleaching approach. Effective metal extraction in the two-step approach could be attributed to the abundant production of organic acids with a content of about 16.3 g/L, 8.4 g/L, and 0.5 g/L of citric acid, oxalic acid, and malic acid, respectively. Further, the predictive modelling revealed that the ANN model was found to predict the fungal bioleaching responses more accurately as compared to the SVM model with R2 values exceeding 0.96 for all targeted metals. This research demonstrates the applicability of the optimization and prediction models for efficient metal extraction from WPCBs using mixed Aspergillus spp. following the two-step approach.
Collapse
Affiliation(s)
- Amber Trivedi
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| |
Collapse
|
6
|
Dong Y, Zan J, Lin H. Bioleaching of heavy metals from metal tailings utilizing bacteria and fungi: Mechanisms, strengthen measures, and development prospect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118511. [PMID: 37418918 DOI: 10.1016/j.jenvman.2023.118511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Recovering key metals from secondary sources is an indispensable strategy for preventing metal shortages and reducing the risk of toxic releases into the environment. Metal mineral resources continue to be depleted and the global supply chain will face metal scarcity. The use of microorganisms for metal transformation plays an important role in the bioremediation of secondary resources. It shows great potential for development due to its compatibility with the environment and possible cost effectiveness. The results of the study show that the influence of bioleaching processes and effects are mainly analyzed from microorganisms, mineral properties and leaching environmental conditions. In this review article, we elucidate light on the role and mechanisms of fungi and bacteria involved in extracting different metals from tailings, including acidolysis, complexolysis, redoxolysis, and bioaccumulation. Key process parameters that affect the efficiency based bioleaching are discussed, providing referenceable pathways to improve leaching efficiency. The investigation concludes that exploitation of the functional genetic role of microorganisms and their optimal growth conditions can achieve efficient leaching of metals. It was found that the improvement of microbial performance was achieved at the level of mutagenesis breeding, mixed culture microorganisms, and genetics. Moreover, control of leaching system parameters and removal of passivation films can be achieved by adding biochar and surfactants in the leaching system as an effective means to improve tailings leaching. Knowledge about cells with minerals and their detailed interactions at the molecular level is still relatively scarce and the field could be deepened and this area needs to be further explored in the future. The challenges and the key issues associated with the bioleaching technology development are elaborated as a green and effective bioremediation strategy for the environment and prospects for imminent are also highlighted.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Key Laboratory of Mineral Processing, Beijing, 102628, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Jinyu Zan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
7
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
8
|
Abdel Azim A, Vizzarro A, Bellini R, Bassani I, Baudino L, Pirri CF, Verga F, Lamberti A, Menin B. Perspective on the use of methanogens in lithium recovery from brines. Front Microbiol 2023; 14:1233221. [PMID: 37601371 PMCID: PMC10434214 DOI: 10.3389/fmicb.2023.1233221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Methanogenic archaea stand out as multipurpose biocatalysts for different applications in wide-ranging industrial sectors due to their crucial role in the methane (CH4) cycle and ubiquity in natural environments. The increasing demand for raw materials required by the manufacturing sector (i.e., metals-, concrete-, chemicals-, plastic- and lubricants-based industries) represents a milestone for the global economy and one of the main sources of CO2 emissions. Recovery of critical raw materials (CRMs) from byproducts generated along their supply chain, rather than massive mining operations for mineral extraction and metal smelting, represents a sustainable choice. Demand for lithium (Li), included among CRMs in 2023, grew by 17.1% in the last decades, mostly due to its application in rechargeable lithium-ion batteries. In addition to mineral deposits, the natural resources of Li comprise water, ranging from low Li concentrations (seawater and freshwater) to higher ones (salt lakes and artificial brines). Brines from water desalination can be high in Li content which can be recovered. However, biological brine treatment is not a popular methodology. The methanogenic community has already demonstrated its ability to recover several CRMs which are not essential to their metabolism. Here, we attempt to interconnect the well-established biomethanation process with Li recovery from brines, by analyzing the methanogenic species which may be suitable to grow in brine-like environments and the corresponding mechanism of recovery. Moreover, key factors which should be considered to establish the techno-economic feasibility of this process are here discussed.
Collapse
Affiliation(s)
- Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Arianna Vizzarro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Ruggero Bellini
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Luisa Baudino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Francesca Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Lamberti
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milan, Italy
| |
Collapse
|