1
|
Wu T, Liu Y, Qi X, Zhang Q, Yao Y, Wu J. The environmental impact assessment of China's ecological migration from a social-ecological perspective. AMBIO 2024; 53:1355-1366. [PMID: 38564103 PMCID: PMC11300421 DOI: 10.1007/s13280-024-02011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
When accounting for the social-ecological impact of an ecological restoration program, both objective environmental contexts and people's subjective perceptions are required. While this kind of environmental impact assessment lacks a comprehensive perspective. We use the difference-in-differences model to evaluate the effect of the greenness of the landscape after ecological migration in the Qilian Mountains in China; and analysis of variance and fixed effects models are used to evaluate the effects of such ecological restoration programs on local people's perceptions. The results show that the ecological migration program in the Qilian Mountains has been successful at not only significantly improving remotely sensed greenness at the landscape scale, but also at enhancing immigrants' environmental perceptions. These findings demonstrate the environmental impacts of ecological migration from a social-ecological perspective, and can provide methodological implications for landscape planning to support a better understanding of ecological restoration programs in the drylands.
Collapse
Affiliation(s)
- Tianjing Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Xinhua Qi
- School of Geographical Sciences School of Neutrality Future Technology, Fujian Normal University, Fuzhou, 350108, China
| | - Qing Zhang
- Yulin Bureau of Natural Resources and Planning, Yulin, 719000, China
| | - Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jincheng Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Zhao Y, Liu S, Liu H, Wang F, Dong Y, Wu G, Li Y, Wang W, Phan Tran LS, Li W. Multi-objective ecological restoration priority in China: Cost-benefit optimization in different ecological performance regimes based on planetary boundaries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120701. [PMID: 38531134 DOI: 10.1016/j.jenvman.2024.120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
In the context of the "United Nations Decade on Ecosystem Restoration", optimizing spatiotemporal arrangements for ecological restoration is an important approach to enhancing overall socioecological benefits for sustainable development. However, against the background of ecological degradation caused by the human use of most natural resources at levels that have approached or exceeded the safe and sustainable boundaries of ecosystems, it is key to explain how to optimize ecological restoration by classified management and optimal total benefits. In response to these issues, we combined spatial heterogeneity and temporal dynamics at the national scale in China to construct five ecological performance regimes defined by indicators that use planetary boundaries and ecological pressures which served as the basis for prioritizing ecological restoration areas and implementing zoning control. By integrating habitat conservation, biodiversity, water supply, and restoration cost constraints, seven ecological restoration scenarios were simulated to optimize the spatial layout of ecological restoration projects (ERPs). The results indicated that the provinces with unsustainable freshwater use, climate change, and land use accounted for more than 25%, 66.7%, and 25%, respectively, of the total area. Only 30% of the provinces experienced a decrease in environmental pressure. Based on the ecological performance regimes, ERP sites spanning the past 20 years were identified, and more than 50% of the priority areas were clustered in regime areas with increased ecological stress. As the restoration area targets doubled (40%) from the baseline (20%), a multi-objective scenario presents a trade-off between expanded ERPs in areas with highly beneficial effects and minimal restoration costs. In conclusion, a reasonable classification and management regime is the basis for targeted restoration. Coordinating multiple objectives and costs in ecological restoration is the key to maximizing socio-ecological benefits. Our study offered new perspectives on systematic and sustainable planning for ecological restoration.
Collapse
Affiliation(s)
- Yifei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hua Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Fangfang Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuhong Dong
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gang Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, China
| | - Yetong Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wanting Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Weiqiang Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
3
|
Qian K, Ma X, Yan W, Li J, Xu S, Liu Y, Luo C, Yu W, Yu X, Wang Y, Zhou L, Wang Y. Trade-offs and synergies among ecosystem services in Inland River Basins under the influence of ecological water transfer project: A case study on the Tarim River basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168248. [PMID: 37918740 DOI: 10.1016/j.scitotenv.2023.168248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Ecosystem services (ESs) are the largest benefits that humans derive directly or indirectly from ecosystems. Inland river basins in arid zones have a variety of key ecosystem functions. At present, inland river basins are experiencing a decline in ESs, such as shrinking lakes, land degradation, and rapid biodiversity loss. In order to address these problems, several ecological restoration projects (ERPs) have been implemented. Therefore, this study selected the Tarim River Basin (TRB), which is highly affected by the ecological water transfer project (EWTP), as the study area, and quantified the differences in ESs caused by the implementation of the EWTP through different scenarios of simulation, and discussed the impact of the EWTP in changing the ESs of the basin. Compared to the pre-EWTP period (1990-1999), the major ESs within the basin showed varying degrees of improvement. Water yield increased by 18 %, carbon sequestration increased by 2 %, wind prevention and sand fixation increased by 13 %, habitat quality increased by 8 %, and food production increased by 35 %. EWTP has shown positive impacts by directly or indirectly affecting runoff, vegetation, evapotranspiration, and landscape patterns, which in turn improves the comprehensive benefits of ESs in the TRB. The implementation of EWTP plays an important role in restoring ESs in inland river basins, and this study provides a key reference for the restoration of ESs in inland river basins in arid zones.
Collapse
Affiliation(s)
- Kaixuan Qian
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China
| | - Xiaofei Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China
| | - Wei Yan
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Jiaxin Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
| | - Shixian Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China
| | - Yuan Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
| | - Chun Luo
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China
| | - Wei Yu
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China
| | - Xiaotong Yu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
| | - Yahui Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhou
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Yonghui Wang
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Arid Area Lake Environment and Resources Laboratory, Key Laboratory of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
4
|
Liu H, Liu S, Wang F, Zhao Y, Dong Y. How to synergize ecological restoration to co-benefit the beneficial contributions of nature to people on the Qinghai-Tibet Plateau? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119267. [PMID: 37862896 DOI: 10.1016/j.jenvman.2023.119267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Understanding the magnitude and spatial distribution of ecological restoration requires a precise assessment of the beneficial contributions of nature to people. However, where the restoration areas should be located and whether the natural contribution of a compensation area can satisfy people's needs in the context of ecological degradation remain unclear. To address these issues, we selected the Qinghai-Tibet Plateau as the study areas, utilizing the offset portfolio analyzer and locator model to identify the compensation sites that offset the losses of ecosystem services and biodiversity resulting from ecological degradation. These compensation sites were developed through two offset types: restoration and protection. Then, based on the offset sites, we assessed nature's contribution to people (NCP) under the current status and future scenarios in terms of various aspects, including the habitat (NCP1), climate change (NCP4), and water quantity and flow regulation (NCP6). This study found that the area impacted by agricultural development was 7.15 × 105 ha, and the required compensation area was 5.5 × 106 ha under the current status. The ratio of the impacted area to the required area was approximately 7.0 in the future scenarios. The average habitat qualities were 0.14 and 0.30, while the mean NCP1 values were 2.69 and 0.51 in the protection and restoration offset sites, respectively. Moreover, based on the offset sites, the high-value contributions in NCP4 accounted for 18.64%-22.69% and 38.87%-46.17% of the total offset sites in terms of the restoration and protection offset types, respectively. Additionally, the estimated high-value contributions in NCP6 accounted for 58.35%-59.02% and 84.40%-95.86% of the total offset sites in the restoration and protection offset types, respectively. Our findings highlighted the significance of ecological restoration in showcasing the role of NCPs. These results could aid conservation managers in developing more targeted ecological strategies to enhance human well-being.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China.
| | - Fangfang Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Yifei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Yuhong Dong
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|