1
|
Xu C, Cao W, Guo F, Hu C, Lyu L. Enhancing methane production in anaerobic digestion via improved electron transfer with dual-reaction-centers catalyst. ENVIRONMENTAL RESEARCH 2025:121190. [PMID: 39983958 DOI: 10.1016/j.envres.2025.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
The recovery of methane from waste-activated sludge and rice straw often encounters challenges due to inefficient electron transfer between microorganisms. To break through this bottleneck, a novel and effective strategy is urgently needed. Here, we propose adding dual reaction centers (DRCs) catalyst with electron-rich and electron-poor microregions into the anaerobic digestion (AD) system. Pigeon manure was transformed into a novel DRCs catalyst, Fe-PMC, through pyrolysis and doping. Our findings indicate that the micro-electric field on the surface of Fe-PMC effectively aggregated humic acid-like substances and increased sludge conductivity. Compared to the control group (0 mg/L), adding trace amounts of Fe-PMC (40 mg/L) significantly increased methane production by 27.45%. High-throughput sequencing analyses revealed that Fe-PMC enhanced the relative abundance of functional microorganisms, such as Geobacter (23.62%) and Methanobacterium (35.53%), thereby promoting methanogenic co-metabolism. Furthermore, functional genes associated with carbon dioxide reduction to methane and direct interspecific electron transfer were upregulated by 3.41% to 297.66%. This study provides a valuable reference for recovering renewable energy from waste using DRCs catalysts.
Collapse
Affiliation(s)
- Congfeng Xu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Wenrui Cao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Fangxing Guo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China; Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Yan X, Peng P, Li X, Zhou X, Chen L, Zhao F. Unlocking anaerobic digestion potential via extracellular electron transfer by exogenous materials: Current status and perspectives. BIORESOURCE TECHNOLOGY 2025; 416:131734. [PMID: 39489312 DOI: 10.1016/j.biortech.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The efficiency of energy transfer among microorganisms presents a substantial hurdle for the widespread implementation of anaerobic digestion techniques. Nonetheless, recent studies have demonstrated that enhancing the extracellular electron transfer (EET) can markedly enhance this efficiency. This review highlights recent advancements in EET for anaerobic digestion and examines the contribution of external additives to fostering enhanced efficiency within this context. Diverse mechanisms through which additives are employed to improve EET in anaerobic environments are delineated. Furthermore, specific strategies for effectively regulating EET are proposed, aiming to augment methane production from anaerobic digestion. This review thus offers a perspective on future research directions aimed at optimizing waste resources, enhancing methane production efficiency, and improving process predictability in anaerobic digestion.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
3
|
Liu X, Shi J, Jiao Y, An J, Tian J, Yang Y, Zhuo L. Integrated multi-omics with machine learning to uncover the intricacies of kidney disease. Brief Bioinform 2024; 25:bbae364. [PMID: 39082652 PMCID: PMC11289682 DOI: 10.1093/bib/bbae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The development of omics technologies has driven a profound expansion in the scale of biological data and the increased complexity in internal dimensions, prompting the utilization of machine learning (ML) as a powerful toolkit for extracting knowledge and understanding underlying biological patterns. Kidney disease represents one of the major growing global health threats with intricate pathogenic mechanisms and a lack of precise molecular pathology-based therapeutic modalities. Accordingly, there is a need for advanced high-throughput approaches to capture implicit molecular features and complement current experiments and statistics. This review aims to delineate strategies for integrating multi-omics data with appropriate ML methods, highlighting key clinical translational scenarios, including predicting disease progression risks to improve medical decision-making, comprehensively understanding disease molecular mechanisms, and practical applications of image recognition in renal digital pathology. Examining the benefits and challenges of current integration efforts is expected to shed light on the complexity of kidney disease and advance clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhuo
- Corresponding author. Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Clinic Medical College, Beijing University of Chinese Medicine, 100029 Beijing, China. E-mail:
| |
Collapse
|
4
|
Li Z, Feng Q, Zhang F, Zhao F, Lu M, Qin F, Guo R. Simultaneous denitrification enhancement and sludge reduction based on novel suspended carrier modified using activated carbon and magnetite at low carbon/nitrogen ratio. BIORESOURCE TECHNOLOGY 2024; 395:130360. [PMID: 38266786 DOI: 10.1016/j.biortech.2024.130360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A novel suspended carrier was prepared by sticking activated carbon (AC) and magnetite (Fe3O4) onto polypropylene slices. Although this carrier could not reverse the decreased denitrification capacity trends under anoxic conditions at an influent carbon/nitrogen (C/N) ratio of 2, it enhanced denitrification by stimulating sludge reduction and accelerating electron transfer to certain extent. The carrier stuck by mixed AC/Fe3O4 exhibited better performance in terms of sludge reduction, extracellular polymeric substances (EPS) secretion, and denitrification than that merely stuck by AC and Fe3O4 at an influent C/N ratio of 2. The carrier stuck by mixed AC/Fe3O4 increased the total nitrogen removal efficiency by 24.6 % ± 12.5 % in a 72-h denitrification batch experiment compared to the common polypropylene carrier. Moreover, the carrier improved EPS secretion and nitrogen metabolism and promoted the growth of Trichococcus and some denitrifying genera. This study provides a reference for the treatment of low C/N ratio sewage.
Collapse
Affiliation(s)
- Zhiwei Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China.
| | - Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| |
Collapse
|
5
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|