1
|
Cao Q, You B, Liu W, Xu H, Ma S, Wang T. Using dredged sediments from Lake Taihu as a plant-growing substrate: Focusing on the impact of microcystins. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122927. [PMID: 39418707 DOI: 10.1016/j.jenvman.2024.122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Using dredged sediment as plant growth substrates is a promising way to deal with large amounts of excavated sediments. However, it is a big challenge to deal with various pollutants in sediments, among which microcystins (MCs) gained limited attention. In this study, sediments collected from Lake Taihu were mixed with agricultural soil at a 1:1 ratio to create various growing substrates for lettuce (Lactuca sativa L. var. ramosa Hort.). Results indicated that fresh weight and leaf area of lettuce increased in some sediment-amended treatments due to additional nutrients, but food quality was negatively affected by sediment amendment as suggested by the soluble sugar and Vitamin C levels. MCs were detected in all lettuce grown in sediment-amended substrates, particularly in treatments with sediments collected during the bloom. The highest MC contents were found in treatment amended with sediments collected from Meiliang Bay in August (88.6 μg kg-1 for MC-LR and 65.6 μg kg-1 for MC-RR). MC accumulation in lettuce and the associated human health risks were significant, especially in treatments with sediments from the bloom period. Ecological risk assessments revealed high RQ values, indicating potential harm to the soil ecosystem. This study underscores the importance of considering MC content in sediments when evaluating their use as growing substrates. The findings contribute to understanding the environmental and health implications of sediment reuse, offering insights for safer agricultural practices and sediment management.
Collapse
Affiliation(s)
- Qing Cao
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China.
| | - Bensheng You
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Weijing Liu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Haibo Xu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Shuzhan Ma
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Tong Wang
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| |
Collapse
|
2
|
Niu S, Wang R, Jiang Y. Quantification of heavy metal contamination and source in urban water sediments using a statistically determined geochemical baseline. ENVIRONMENTAL RESEARCH 2024; 263:120080. [PMID: 39343342 DOI: 10.1016/j.envres.2024.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Geochemical baselines (GBs) play a crucial role in discerning natural variability from anthropogenic impacts on elemental composition within the environment. However, their applicability in quantifying the contribution of pollution sources to heavy metal contamination in sediments remains understudied. This research aimed to assess the degree of contamination and local pollution source attribution by leveraging geochemical baselines derived from statistical techniques, specifically the relative cumulative frequency (RCF) and 2σ-iterative (2σ-I) methods. In the urban water systems of Ma'anshan City, the major iron ore centre in eastern China, we observed concentration ranges of Cr, Cu, Ni, Pb and Zn in 36 sediment samples ranging from 66.89 to 352.08 mg/kg, 22.01 to 133.37 mg/kg, 22.66 to 50.80 mg/kg, 14.66to 264.37 mg/kg and 73.30 to 2707.46 mg/kg, respectively. RCF and 2σ-I techniques yielded similar GBs with no significant differences (p > 0.05). The geo-accumulation index and contamination factor analysis showed a sediment heavy metal accumulation rank of Zn > Pb > Cr > Cu > Ni. The contribution percentage of pollution sources varied with land functional type of watershed. For industry-influenced sediments, the contribution of local sources to Cr, Cu, Pb and Zn was significant, with shares of 43%-88%. Overall, this study highlights the valuable insights provided by GBs for effective management of urban aquatic environments.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China.
| | - Ruiqi Wang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| | - Yun Jiang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| |
Collapse
|
3
|
Lei B, Wang X, Wang L, Kang Y, Wan T, Li W, Yang Q, Zhang J. Combining chemical analysis and toxicological methods to access the ecological risk of complex contamination in Daye Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173690. [PMID: 38825198 DOI: 10.1016/j.scitotenv.2024.173690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
As one of the nine primary non-ferrous metal smelting bases in China, Daye Lake basin was polluted due to diverse human activities. But so far the pollution status and related ecological risks of this region have not been detailly investigated. In current study, pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in eight sediment samples from Daye Lake were quantified. 18S rRNA gene sequencing was employed to profile the nematode community structure within these sediments. Model organism Caenorhabditis elegans (C. elegans) were further applied for a comprehensive ecological risk assessment of Daye Lake. Notably, Cadmium (Cd) was identified as a key driver of ecological risk, reaching an index of 1287.35. At sample point S4, OCPs particularly p,p'-DDT, displayed an extreme ecological risk with a value of 23.19. Cephalobidae and Mononchida showed strong sensitivity to pollutant levels, reinforcing their suitability as robust bioindicators. The composite pollutants in sampled sediments caused oxidative stress in C. elegans, with gene Vit-2 and Mtl-1 as sensitive biomarkers. By employing the multiple analysis methods, our data can offer valuable contributions to environmental monitoring and health risk assessment for composite polluted areas.
Collapse
Affiliation(s)
- Bo Lei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yue Kang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianying Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjuan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qingqing Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Dueñas-Moreno J, Mora A, Narvaez-Montoya C, Mahlknecht J. Trace elements and heavy metal(loid)s triggering ecological risks in a heavily polluted river-reservoir system of central Mexico: Probabilistic approaches. ENVIRONMENTAL RESEARCH 2024; 262:119937. [PMID: 39243840 DOI: 10.1016/j.envres.2024.119937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The contamination of trace elements and heavy metal(loid)s in water bodies has emerged as a global environmental concern due to their high toxicity at low concentrations to both biota and humans. This study aimed to evaluate the ecological risk associated with the occurrence and spatial distribution of Mn, Fe, Co, Cd, Ni, Zn, Sb, As, Tl, Cu, Pb, U, and V in the heavily polluted waters of an important river-reservoir system (Atoyac River Basin) in central Mexico, using two-level tired probabilistic approaches: Risk Quotient based on Species Sensitivity Distribution (RQSSD) and Joint Probability Curves (JPCs). The concentrations of these elements varied widely, ranging from 0.055 μg L-1 to 9200 μg L-1 and from 0.056 μg L-1 to 660 μg L-1, in both total and dissolved fractions, respectively. Although geogenic and anthropogenic sources contribute to the presence of these elements in waters, the discharge of untreated or poorly treated industrial wastewater is the main source of contamination. In this regard, the RQSSD results indicated high ecological risk for Mn, Fe, Co, Ni, Zn, and Sb, and medium or low ecological risk for As, Tl, U, and V at almost all sampling sites. The highest RQSSD values were found downstream of a large industrial corridor for Co, Zn, Tl, Pb, and V, with Tl, Pb, and V escalating to higher risk levels, highlighting the negative impact of industrial contamination on biota. The JPC results for these elements are consistent with the RQSSD approach, indicating an ecological risk to species from Mn, Fe, Co, Ni, Zn, and Sb in waters of the Atoyac River Basin. Therefore, the results of this study offer a thorough assessment of pollution risk, providing valuable insights for legislators on managing and mitigating exposure.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Christian Narvaez-Montoya
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
5
|
Chen Q, Wu L, Zhou C, Liu G, Yao L. A study of environmental pollution and risk of heavy metals in the bottom water and sediment of the Chaohu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19658-19673. [PMID: 38361101 DOI: 10.1007/s11356-024-32141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Most of the existing research for heavy metals in water at present is focusing on surface water. However, potential environmental risk of heavy metals in the bottom water of lakes cannot be ignored. In this study, the content, distribution, and speciation of nine heavy metals (As, V, Cr, Co, Ni, Cu, Zn, Cd, and Pb) in the bottom water and sediment of Chaohu Lake were studied. Some pollution assessment methods were used to evaluate the environmental effect of heavy metals. Positive matrix factorization was conducted to investigate the potential sources of heavy metals in sediment. The contents of heavy metals in the bottom water of Chaohu Lake mean that its environmental pollution can be ignored. In sediment, Cd and Zn have showed stronger ecological risk. pH and redox potential are more likely to affect the stability of heavy metals in the bottom water of Chaohu Lake during the dry reason. Industrial sources (16%) are no longer the largest source of heavy metal pollution; traffic sources (33.6%) and agricultural sources (23.4%) have become the main sources of pollution at present. This study can provide some support and suggestions for the treatment of heavy metals in lakes.
Collapse
Affiliation(s)
- Qiang Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lei Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei, 230061, Anhui, China.
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Gang Liu
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| | - Long Yao
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| |
Collapse
|
6
|
Wang L, Mao X, Song X, Wei X, Yu H, Xie S, Zhang L, Tang W. Non-Negligible Ecological Risks of Urban Wetlands Caused by Cd and Hg on the Qinghai-Tibet Plateau, China. TOXICS 2023; 11:654. [PMID: 37624160 PMCID: PMC10458823 DOI: 10.3390/toxics11080654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The Huangshui National Wetland Park (HNWP) is a unique national wetland park in a city on the Qinghai-Tibetan Plateau, containing three zones: Haihu, Beichuan, and Ninghu. In this study, a total of 54 soil samples (18 sampling points with depths of 0-10 cm, 10-20 cm, and 20-30 cm) were collected in these three zones, and the contents of heavy metals (Cr, Cd, Cu, Hg, Ni, Pb, Zn, and As) of each sample were determined. The ecological risk of eight kinds of heavy metals was evaluated by using the geo-accumulation index (Igeo), and the ecological risk-controlling effect of the Xining urban wetlands on heavy metals was explored by comparative analysis, and the possible sources of heavy metals in the soil were analyzed via correlation analysis and principal component analysis (PCA). The results revealed that the total heavy metal concentration order was Haihu > Beichuan > Ninghu zone. As and Cu presented vertical accumulation characteristics in the surface and lower horizon, respectively. Cr, Cd, Hg, Ni, Pb, and Zn accumulated downwards along the depth. On the spatial scale, the enrichments of Cd and Hg brought non-negligible ecological risks in plateau urban wetlands. The results of PCA indicated that soil heavy metals mainly came from compound sources of domestic and atmospheric influences, traffic pollution sources, and industrial pollution sources. The study has revealed that human activities have inevitable negative impacts on wetland ecosystems, while the HNWP provides a significant weakening effect on heavy metal pollution.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China; (L.W.); (L.Z.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Xufeng Mao
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China; (L.W.); (L.Z.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Xiuhua Song
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China; (X.S.); (S.X.)
| | - Xiaoyan Wei
- School of Economics and Management, Qinghai Normal University, Xining 810008, China;
| | - Hongyan Yu
- Management and Service Center of Qilian Mountain National Park, Xining 810008, China;
| | - Shunbang Xie
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China; (X.S.); (S.X.)
| | - Lele Zhang
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China; (L.W.); (L.Z.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Wenjia Tang
- State Key Laboratory for Environmental Protection Monitoring and Assessment of the Qinghai–Xining Plateau, Xining 810007, China;
| |
Collapse
|