1
|
Xiao M, Li X, Seuntjens P, Sharifi M, Mao D, Dong J, Yang X, Zhang H. Qualitative and quantitative simulation of best management practices (BMPs) for contaminated megasite remediation using the SiteWise™ tool. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121098. [PMID: 38776657 DOI: 10.1016/j.jenvman.2024.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Remediation activities, particularly in megasites, may induce substantial secondary environmental impacts that must be addressed for green and sustainable remediation (GSR) practices. Only limited studies are available quantitatively assessing the environmental footprint and environmental benefits of implementing Best Management Practices (BMPs) in megasite remediation. This study used the SiteWise™ tool, a quantitative environmental footprint assessment for scenario simulation and benefit quantification of BMPs, on a contaminated megasite in Hebei Province, China. We observed a considerable environmental footprint and energy from the remediation. Taking the final implementation alternative (Alt 1) as an example, which is characterized by combining multiple remediation techniques, the greenhouse gas (GHG) emissions reached 113,474 t, the energy used was 2,082,841 million metric British thermal units (MMBTU), and other air pollutant emissions (NOx, SOx, and PM10) amounted to 856 t. Further BMP analyses highlighted the benefits of substituting the conventional solidification/stabilization agent with willow woodchip-based biochar, which could reduce GHG emissions by 50,806 t and energy used by 926,648 MMBTU. The overall environmental benefits of implementing all applicable BMPs in the remediation were significant, with a 66.85%, 50.15%, and 56.05% reduction in GHG emissions, energy used, and other air pollutants, respectively. Our study provides insights into quantifying the environmental footprint and exploring emission reduction pathways for contaminated megasite remediation. It also offers a feasible path for quantifying the environmental benefits of BMPs, promoting the development of GSR of contaminated sites.
Collapse
Affiliation(s)
- Meng Xiao
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xianglan Li
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Piet Seuntjens
- Environmental Modelling Unit, VITO, Boeretang 200, 2400, Mol, Belgium
| | - Mehdi Sharifi
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, British Columbia, V0H 1Z0, Canada
| | - Debin Mao
- Environmental Modelling Unit, VITO, Boeretang 200, 2400, Mol, Belgium
| | - Jingqi Dong
- Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Xintong Yang
- Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Hongzhen Zhang
- Chinese Academy of Environmental Planning, Beijing, 100041, China
| |
Collapse
|
2
|
Wood JP. Review of techniques for the in-situ sterilization of soil contaminated with Bacillus anthracis spores or other pathogens. Res Microbiol 2024; 175:104175. [PMID: 38141796 PMCID: PMC11192063 DOI: 10.1016/j.resmic.2023.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
This review summarizes the literature on efficacy of techniques to sterilize soil. Soil may need to be sterilized if contaminated with pathogens such as Bacillus anthracis. Sterilizing soil in-situ minimizes spread of the bio-contaminant. Soil is difficult to sterilize, with efficacy generally diminishing with depth. Methyl bromide, formaldehyde, and glutaraldehyde are the only soil treatment options that have been demonstrated at full-scale to effectively inactivate Bacillus spores. Soil sterilization modalities with high efficacy at bench-scale include wet and dry heat, metam sodium, chlorine dioxide gas, and activated sodium persulfate. Simple oxidants such as chlorine bleach are ineffective in sterilizing soil.
Collapse
Affiliation(s)
- Joseph P Wood
- United States Environmental Protection Agency, Office of Research and Development, Homeland Security Research Program, 109 T.W. Alexander Dr., P.O. Box 12055, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Sun N, Wang T, Qi B, Yu S, Yao Z, Zhu G, Fu Q, Li C. Inhibiting release of phenanthrene from rice-crab coculture sediments to overlying water with rice stalk biochar: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168385. [PMID: 37952670 DOI: 10.1016/j.scitotenv.2023.168385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Rice crab coculture is a new ecological agriculture model combining rice cultivation and crab farming. Current research related to rice crab coculture only focuses on production theory and technical system establishment, while ignoring the potential ecological risk of Polycyclic aromatic hydrocarbon(PAHs) in rice crab coculture sediment. In this study, rice straw was used to make rice straw biochar to explore the performance and mechanism of inhibiting release of phenanthrene(PHE) from rice-crab coculture sediments to overlying water with rice stalk biochar. The kinetic and isotherm adsorption data were best represented by the Langmuir model and pseudo-second-order model with a maximum adsorption capacity of 53.35 mg/g at 12 h contact time. The results showed that PHE was released from the rice-crab substrate to the overlying water in dissolved and particle forms as a result of bioturbation, and the PHE concentrations in dissolved and particle forms were 20.9 μg/L and 14.22 μg/L, respectively. This leads to secondary ecological risks in rice-crab co-culture systems. This is related to dissolved organic carbon(DOC) carrying the dissolved PHE and total suspended solids(TSS) carrying the particle PHE in the overlying water. Due to its large specific surface area, rice straw biochar is rich in functional groups, providing multiple hydrophobic adsorption sites. After adding rice straw biochar at 0.5 % w/w (dry weight) dose, the removal efficiency of dissolved and particulate PHE in the overlying water were 78.99 % and 42.11 %, respectively. Rice straw biochar is more competitively adsorbed PHE in the overlying water than TSS and DOC. The removal efficiency of PHE from the sediment was 52.75 %. This study confirmed that rice stalk biochar could effectively inhibit PHE migration and release in paddy sediment. It provides an environment- friendly in situ remediation method for the management of PAHs pollution from crab crops in rice fields.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Academy of Environmental Sciences Postdoctoral Joint Scientific Research Station, Harbin 150030, China
| | - Tianyi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bowei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shijie Yu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Smart Home Business Group, Midea Group, Wuxi 214000, China
| | - Zhongbao Yao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guanglei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chenyang Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|