1
|
Janik M, Gomez C, Kodaira S, Grzadziel D. Development of a new tool to simultaneously measure soil-gas permeability and CO 2 concentration as important parameters for geogenic radon potential assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:124. [PMID: 39751708 DOI: 10.1007/s10661-024-13594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
This study assessed the geogenic radon potential using PECAME, an innovative tool designed to simultaneously measure soil-gas permeability and CO2 concentration - two key parameters for understanding radon transport in soil. Comparative field studies using the RADON-JOK device in various geological settings in Japan and Poland demonstrate the effectiveness of PECAME. These studies reveal a strong correlation between PECAME and RADON-JOK, with an R2 value of 0.94 for flow rate of 3.5 dm3 min- 1 . Since the soil-gas Rn concentration and permeability were measured simultaneously, the geogenic radon potential was calculated. Most measured points fall within the low to medium radon index zones, with two exceptions near active faults located in the high zone. Therefore, permeability and CO2 measurements using PECAME may facilitate further research in Japan to develop a comprehensive geogenic radon potential map.
Collapse
Affiliation(s)
- Miroslaw Janik
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
| | - Christopher Gomez
- Sabo Laboratory, Kobe University, Fukae Minamimachi 5-1-1, Kobe, 658-0022, Japan
| | - Satoshi Kodaira
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Dominik Grzadziel
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, Krakow, PL-31342, Poland
| |
Collapse
|
2
|
Ruiz MC, Pla C, Fernandez-Cortes A, Benavente D. Responses of underground air and drip water geochemistry to meteorological factors: A multi-parameter approach in the Rull Cave (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171837. [PMID: 38513849 DOI: 10.1016/j.scitotenv.2024.171837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Our research aims to assess the complex interactions between the elements that constitute and influence a cave system through the analysis of an extensive dataset of climatic and environmental parameters (222Rn, CO2, drip rates, chemical composition, and environmental isotopes) measured in air, water, and solid in the Rull Cave (southeastern Spain). Of particular importance is understanding the effect of rainfall and temperature on water and gas transport through the epikarst and the involved processes. Our results show that the cave gaseous concentration patterns do not only depend on the temperature-caused movement of air masses, but they can also be affected by abundant rainfall. The δ18O and δD composition of cave water also relies on such precipitations for the effective transfer of the rainfall signal into the cave, which can take between 3 and 7 days. The elemental ratios (Sr/Ca and Mg/Ca) show high responsiveness to the water drip rate, hinting that enhanced prior calcite precipitation (PCP) occurs at slower drip rates. Despite this, and regardless of drip rates, calcite saturation indices follow a seasonal variation pattern inversely proportional to the cave air CO2 concentration, while δ13C-DIC is proportional. Our results show how the interlinkage between these multiple components defines the dynamics of the atmosphere-soil-cave system. Cave monitoring is then essential to understand the karstic vadose zone, which is highly sensitive to climatic influence and its changes.
Collapse
Affiliation(s)
- M Candela Ruiz
- Department of Earth and Environmental Sciences, University of Alicante, C. San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.
| | - Concepción Pla
- Department of Civil Engineering, University of Alicante, C. San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.
| | - Angel Fernandez-Cortes
- Department of Biology and Geology, University of Almeria, C. Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain.
| | - David Benavente
- Department of Earth and Environmental Sciences, University of Alicante, C. San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.
| |
Collapse
|
3
|
Benà E, Ciotoli G, Petermann E, Bossew P, Ruggiero L, Verdi L, Huber P, Mori F, Mazzoli C, Sassi R. A new perspective in radon risk assessment: Mapping the geological hazard as a first step to define the collective radon risk exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169569. [PMID: 38157905 DOI: 10.1016/j.scitotenv.2023.169569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Radon is a radioactive gas and a major source of ionizing radiation exposure for humans. Consequently, it can pose serious health threats when it accumulates in confined environments. In Europe, recent legislation has been adopted to address radon exposure in dwellings; this law establishes national reference levels and guidelines for defining Radon Priority Areas (RPAs). This study focuses on mapping the Geogenic Radon Potential (GRP) as a foundation for identifying RPAs and, consequently, assessing radon risk in indoor environments. Here, GRP is proposed as a hazard indicator, indicating the potential for radon to enter buildings from geological sources. Various approaches, including multivariate geospatial analysis and the application of artificial intelligence algorithms, have been utilised to generate continuous spatial maps of GRP based on point measurements. In this study, we employed a robust multivariate machine learning algorithm (Random Forest) to create the GRP map of the central sector of the Pusteria Valley, incorporating other variables from census tracts such as land use as a vulnerability factor, and population as an exposure factor to create the risk map. The Pusteria Valley in northern Italy was chosen as the pilot site due to its well-known geological, structural, and geochemical features. The results indicate that high Rn risk areas are associated with high GRP values, as well as residential areas and high population density. Starting with the GRP map (e.g., Rn hazard), a new geological-based definition of the RPAs is proposed as fundamental tool for mapping Collective Radon Risk Areas in line with the main objective of European regulations, which is to differentiate them from Individual Risk Areas.
Collapse
Affiliation(s)
- Eleonora Benà
- Dipartimento di Geoscienze, Università di Padova, Padova, Italy.
| | - Giancarlo Ciotoli
- Istituto di Geologia Ambientale e Geoingegneria (IGAG), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy; Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy
| | - Eric Petermann
- Federal Office for Radiation Protection (BfS), Section Radon and NORM, Berlin, Germany
| | - Peter Bossew
- Federal Office for Radiation Protection (BfS), Section Radon and NORM, Berlin, Germany
| | - Livio Ruggiero
- Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA), Roma, Italy
| | - Luca Verdi
- Provincia Autonoma di Bolzano, Laboratorio analisi aria e radioprotezione, Bolzano, Italy
| | - Paul Huber
- Azienda Sanitaria dell'Alto Adige, Bressanone, Italy
| | - Federico Mori
- Istituto di Geologia Ambientale e Geoingegneria (IGAG), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Claudio Mazzoli
- Dipartimento di Geoscienze, Università di Padova, Padova, Italy
| | - Raffaele Sassi
- Dipartimento di Geoscienze, Università di Padova, Padova, Italy
| |
Collapse
|
4
|
Gil-Oncina S, Valdes-Abellan J, Pla C, Benavente D. Estimation of the Radon Risk Under Different European Climates and Soil Textures. Front Public Health 2022; 10:794557. [PMID: 35252086 PMCID: PMC8892385 DOI: 10.3389/fpubh.2022.794557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Radon is a radioactive gas produced from the natural radioactive decay of uranium and is found in almost all rocks and soils. In confined places (e.g., dwellings, workplaces, caves, and underground mines), radon may accumulate and become a substantial health risk since it is considered the second most important cause of lung cancer in many developed countries. Radon risk assessment commonly considers either field or estimate values of the radon concentration and the gas permeability of soils. However, radon risk assessment from single measurement surveys to radon potential largescale mapping is strongly sensitive to the soil texture variability and climate changes, and particularly, to the soil water content dynamic and its effect on soil gas permeability. In this paper, the gas permeability of soils, and thus, the estimation of radon risk, is studied considering the effect of three different climates following the Köppen classification and four soil textures on soil water content dynamics. This investigation considers the CLIGEN weather simulator to elaborate 100-year length climatic series; Rosseta 3 pedotransfer function to calculate soil hydraulics parameters, and the HYDRUS-1D software to model the dynamics of water content in the soil. Results reveal that climate strongly affects gas permeability of soils and they must be considered as an additional factor during the evaluation of radon exposure risk. The impact of climate and texture defines the soil water content dynamic. Coarse soils show smaller gas permeability variations and then radon risk, in this case, is less affected by the climate type. However, in clay soils, the effect of climate and the differences in soil water content derive in gas permeability variations between 100 and 1,000 times through an annual cycle. As a result, it may cross the boundary between two radon risk categories. Results deeply confirm that both climate and texture should be compulsory considered when calculating the radon exposure risk and in the definition of new strategies for the elaboration of more reliable geogenic radon potential largescale maps.
Collapse
Affiliation(s)
- Sara Gil-Oncina
- Department of Earth and Environmental Sciences, University of Alicante, Alicante, Spain
- *Correspondence: Sara Gil-Oncina
| | | | - Concepcion Pla
- Department of Civil Engineering, University of Alicante, Alicante, Spain
| | - David Benavente
- Department of Earth and Environmental Sciences, University of Alicante, Alicante, Spain
| |
Collapse
|
5
|
Lefferts MJ, Castell MR. Influence of soil type on chemiresistive detection of buried ANFO. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Haruna R, Saleh MA, Hashim S, Hamzah K, Zainal J, Sanusi MSM. Assessment of geogenic radon potential in Johor Malaysia. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07396-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
EL Amrani B, Amraoui MB. Biomechanics of Atlas Cedar Roots in response to the Medium Hydromechanical Characteristics. SCIENTIFICA 2020; 2020:7538698. [PMID: 32908784 PMCID: PMC7474391 DOI: 10.1155/2020/7538698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The biomechanical root flexibility in response to hydromechanical soil heterogeneity is the most determining factor of the root architecture which plays a paramount role in mycorrhizal infection and allows the seedlings to adapt to the environmental constraint. We examined the impact of five different hydromechanical medium properties (hydroponics, vermiculite, vermiculite-gravel, sawdust, and sand) on the morphology, physiology, and anatomy of Cedrus atlantica seedlings at a controlled growth chamber. The growth of the seedling is strongly stimulated by the hydroponic medium through the stimulation of the aerial part dry weight and the main root length. However, the sand medium increases the main root dry weight by the radial expanse stimulation at the level of the epidermis, vascular cylinder, and cortex and compensates the less root architecture by the stimulation of the xylem and phloem areas. In contrast to sand and hydroponic media, the sawdust medium stimulates the phloem/xylem ratio, the root architecture, and the short roots. The Pearson bilateral correlation shows that the aerial part dry weight is positively correlated with the permeability, porosity, and water-holding capacity and negatively with the bulk density and density at saturation, whereas the short root production is negatively correlated with the permeability and water-holding capacity. Hence, the hydromechanical characteristics of the soils must be taken into account in the reforestation and mycorrhization attempts.
Collapse
Affiliation(s)
- Belkacem EL Amrani
- Laboratory of Biotechnology, Environment, Food and Health (LBEFH), Department of Biology, Faculty of Sciences Dhar el Mahraz, Sidi Mohammed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, Morocco
| | - Mohammed Bendriss Amraoui
- Laboratory of Biotechnology, Environment, Food and Health (LBEFH), Department of Biology, Faculty of Sciences Dhar el Mahraz, Sidi Mohammed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, Morocco
| |
Collapse
|