1
|
Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, Naz I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. CHEMOSPHERE 2022; 291:132979. [PMID: 34801572 DOI: 10.1016/j.chemosphere.2021.132979] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Phytoremediation is an effective, green and economical technique. Different types of phytoremediation methods can be used for the reduction of heavy metal contaminations, such as phytoextraction, phytovolatilization, phytostabilization and phytofiltration. The biomass of plants and the bioavailability of heavy metals in soil are the key factors affecting the efficiency of phytoremediation. It's worth noting that the low remediation efficiency and the lack of effective disposal methods for contaminated biomass have limited its development and application. At present, biological, physical, chemical, agronomic and genetic approaches have been used to enhance phytoremediation. Disposal methods of contaminated biomass usually include pyrolysis, incineration, composting and compaction. They are effective, but are costly and have security problems. Improper disposal of contaminated biomass can lead to leaching of heavy metals. The leaching possibility of different forms of heavy metal in plants is different. Hence, it has great significance to explore the different forms of heavy metals in plants which can help to explore appropriate disposal methods. According to the challenges of phytoremediation, we put forward some views and recommendations for the sustainable and rapid development of phytoremediation technology.
Collapse
Affiliation(s)
- Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiawei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Lin Sun
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
2
|
Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization. SUSTAINABILITY 2021. [DOI: 10.3390/su14010445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs), using various soil additives. This paper determined the effectiveness of biochar-assisted phytostabilization using Dactylis glomerata L. of soil contaminated with high concentrations of the selected PTEs (in mg/kg soil): Cu (780 ± 144), Cd (25.9 ± 2.5), Pb (13,540 ± 669) and Zn (8433 ± 1376). The content of the selected PTEs in the roots and above-ground parts of the tested grass, and in the soil, was determined by atomic absorption spectrometry (AAS). The addition of biochar to the contaminated soil led to an increase in plant biomass and caused an increase in soil pH values. Concentrations of Cu, Cd, Pb and Zn were higher in the roots than in the above-ground parts of Dactylis glomerata L. The application of biochar significantly reduced the total content of PTEs in the soil after finishing the phytostabilization experiment, as well as reducing the content of bioavailable forms extracted from the soil using CaCl2 solution, which was clearly visible with respect to Cd and Pb. It is concluded that the use of biochar in supporting the processes of assisted phytostabilization of soils contaminated with PTEs is justified.
Collapse
|
3
|
Lyu P, Wang G, Cao Y, Wang B, Deng N. Phosphorus-modified biochar cross-linked Mg-Al layered double-hydroxide composite for immobilizing uranium in mining contaminated soil. CHEMOSPHERE 2021; 276:130116. [PMID: 33690044 DOI: 10.1016/j.chemosphere.2021.130116] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The decommissioning of uranium mill tailings (UMTs) is usually accompanied by uranium (U) contamination in soil, which poses a serious threat to human health and ecological safety. In this study, a novel phosphorus-modified bamboo biochar (PBC) cross-linked Mg-Al layered double-hydroxide (LDH) composite ("PBC@LDH") was successfully prepared by phosphate pre-impregnation and a hydrothermal method with Mg-Al LDH. Physicochemical analysis revealed that phosphorus-containing functional groups and Mg-Al LDH were grafted onto the pristine biochar (BC) matrix. Laboratory-scale incubation and column leaching experiments were performed on the prepared BC, PBC, and PBC@LDH. The results showed that, at a dosage of 10%, the PBC@LDH composite had a commendable ability to immobilize U in soil. After 40 days of incubation with the stabilizer, the more mobile U was converted into immobilized species. Furthermore, during a column leaching experiment with simulated acid rain, the cumulative loss and leaching efficiency of U were remarkably reduced by PBC@LDH treatment compared with the control, reaching 53% and 54%, respectively. Surface complexation, co-precipitation, and reduction described the adsorption and immobilization mechanisms. In conclusion, this research demonstrates that the PBC@LDH composite offers a potentially effective amendment for the remediation of U contaminated soil.
Collapse
Affiliation(s)
- Peng Lyu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China.
| | - Guanghui Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China.
| | - Yelin Cao
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Bing Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Nansheng Deng
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
4
|
Radziemska M, Gusiatin ZM, Holatko J, Hammerschmiedt T, Głuchowski A, Mizerski A, Jaskulska I, Baltazar T, Kintl A, Jaskulski D, Brtnicky M. Nano Zero Valent Iron (nZVI) as an Amendment for Phytostabilization of Highly Multi-PTE Contaminated Soil. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2559. [PMID: 34069264 PMCID: PMC8156641 DOI: 10.3390/ma14102559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
In recent years, a lot of attention has been given to searching for new additives which will effectively facilitate the process of immobilizing contaminants in the soil. This work considers the role of the enhanced nano zero valent iron (nZVI) strategy in the phytostabilization of soil contaminated with potentially toxic elements (PTEs). The experiment was carried out on soil that was highly contaminated with PTEs derived from areas in which metal waste had been stored for many years. The plants used comprised a mixture of grasses-Lolium perenne L. and Festuca rubra L. To determine the effect of the nZVI on the content of PTEs in soil and plants, the samples were analyzed using flame atomic absorption spectrometry (FAAS). The addition of nZVI significantly increased average plant biomass (38%), the contents of Cu (above 2-fold), Ni (44%), Cd (29%), Pb (68%), Zn (44%), and Cr (above 2-fold) in the roots as well as the soil pH. The addition of nZVI, on the other hand, was most effective in reducing the Zn content of soil when compared to the control series. Based on the investigations conducted, the application of nZVI to soil highly contaminated with PTEs is potentially beneficial for the restoration of polluted lands.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02 776 Warsaw, Poland
| | - Zygmunt M. Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10 719 Olsztyn, Poland;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
| | - Andrzej Głuchowski
- SGGW Water Centre, Warsaw University of Life Sciences—SGGW, 02 787 Warsaw, Poland;
| | - Andrzej Mizerski
- The Main School of Fire Service, Slowackiego 52/54, 01 629 Warsaw, Poland;
| | - Iwona Jaskulska
- Department of Agronomy, Faculty of Agriculture and Biotechnology, University of Science and Technology, 7 Prof. S. Kaliskiego St., 85 796 Bydgoszcz, Poland; (I.J.); (D.J.)
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Dariusz Jaskulski
- Department of Agronomy, Faculty of Agriculture and Biotechnology, University of Science and Technology, 7 Prof. S. Kaliskiego St., 85 796 Bydgoszcz, Poland; (I.J.); (D.J.)
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| |
Collapse
|
5
|
Rodriguez-Freire L, DeVore CL, El Hayek E, Berti D, Ali AMS, Lezama Pacheco JS, Blake JM, Spilde MN, Brearley AJ, Artyushkova K, Cerrato JM. Emerging investigator series: entrapment of uranium-phosphorus nanocrystals inside root cells of Tamarix plants from a mine waste site. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:73-85. [PMID: 33325952 PMCID: PMC8479813 DOI: 10.1039/d0em00306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6-58.9 mg kg-1), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 μM U. The U concentration in the solution decreased 36-59% after 24 h, and 49-65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U-P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix, followed by U-P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.
Collapse
Affiliation(s)
- Lucia Rodriguez-Freire
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Cherie L DeVore
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Eliane El Hayek
- Department of Chemistry, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Debora Berti
- Oceanography Department, Texas A&M University, College Station, Texas 77845, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Juan S Lezama Pacheco
- Department of Environmental Earth System Science, Stanford University, Stanford, California 94305, USA
| | - Johanna M Blake
- Department of Chemistry, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, USA and U.S. Geological Survey, 6700 Edith Blvd NE, Albuquerque, New Mexico 87113, USA
| | - Michael N Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Adrian J Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - José M Cerrato
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
6
|
Trace Element Levels in Native Plant Species around the Industrial Site of Puchuncaví-Ventanas (Central Chile): Evaluation of the Phytoremediation Potential. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work investigates the uptake of selected trace elements (Cu, Sb, As, Pb, Cd, Zn, Cr, Mn, Ni, V, and Co) from soil and their accumulation in the biomass samples (leaves and flowers) of three selected native plants (namely Oenothera picensis, OP; Sphaeralcea velutina, SV; and Argemone subfusiformis, AS) around an industrial area (Puchuncaví-Ventanas) located in the Puchuncaví valley, in the central region of Chile. Primary emission sources in the area come from a copper refinery, coal-fired power plants, and a set of 14 other different industrial facilities. Trace element measurements in the native plants of this area and the ability to transfer of these pollutants from soil to plants (transfer factor) have been assessed in order to identify the potential use of these plant species for phytoremediation. Preliminary results showed a high concentration of trace elements in the OP, SV, and AS samples. The concentration of these elements in the plants was found to be inversely correlated to the distance of the primary emission sources. Moreover, the high concentrations of trace elements such as Cu, As, Cr and V, upon the toxic limits in the native plant species, suggest the need for continuous monitoring of the region. The OP species was identified as the plant with the highest capacity for trace elements accumulation, which also showed higher accumulation potential in whole aerial parts than in leaves. Transfer factor values suggested that these native plants had phytoremediation potential for the elements Cu, Pb, As, Ni, and Cr. This study provides preliminary baseline information on the trace element compositions of important native plants and soil in the Puchuncaví-Ventanas area for phytoremediation purposes.
Collapse
|
7
|
Radziemska M, Bęś A, Gusiatin ZM, Sikorski Ł, Brtnicky M, Majewski G, Liniauskienė E, Pecina V, Datta R, Bilgin A, Mazur Z. Successful Outcome of Phytostabilization in Cr(VI) Contaminated Soils Amended with Alkalizing Additives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6073. [PMID: 32825498 PMCID: PMC7503857 DOI: 10.3390/ijerph17176073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022]
Abstract
This study analysed the effect of three alkalizing soil amendments (limestone, dolomite chalcedonite) on aided phytostabilization with Festuca rubra L. depending on the hexavalent chromium (Cr(VI)) level in contaminated soil. Four different levels of Cr(VI) were added to the soil (0, 50, 100 and 150 mg/kg). The Cr contents in the plant roots and above-ground parts and the soil (total and extracted Cr by 0.01 M CaCl2) were determined with flame atomic absorption spectrometry. The phytotoxicity of the soil was also determined. Soil amended with chalcedonite significantly increased F. rubra biomass. Chalcedonite and limestone favored a considerable accumulation of Cr in the roots. The application of dolomite and limestone to soil contaminated with Cr(VI) contributed to a significant increase in pH values and was found to be the most effective in reducing total Cr and CaCl2-extracted Cr contents from the soil. F. rubra in combination with a chalcedonite amendment appears to be a promising solution for phytostabilization of Cr(VI)-contaminated areas. The use of this model can contribute to reducing human exposure to Cr(VI) and its associated health risks.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Agnieszka Bęś
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (Ł.S.); (Z.M.)
| | - Zygmunt M. Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10 719 Olsztyn, Poland;
| | - Łukasz Sikorski
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (Ł.S.); (Z.M.)
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic; (M.B.); (V.P.); (R.D.)
- Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 62100 Brno, Czech Republic
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Ernesta Liniauskienė
- Kaunas Forestry and Environmental Engineering, University of Applied Sciences, Liepu str. 1, Girionys, LT-53101 Kaunas reg., Lithuania;
| | - Václav Pecina
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic; (M.B.); (V.P.); (R.D.)
- Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 62100 Brno, Czech Republic
| | - Rahul Datta
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic; (M.B.); (V.P.); (R.D.)
| | - Ayla Bilgin
- Faculty of Engineering, Artvin Coruh University, Seyitler Campus, 08000 Artvin, Turkey;
| | - Zbigniew Mazur
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (Ł.S.); (Z.M.)
| |
Collapse
|