1
|
Aba A, Al-Dousari A, Ismaeel A, Al-Dabbous A, Alboloushi O, Al-Jarba M. Dust resuspension rates in Kuwait: insights from 7Be and 137Cs radionuclides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60640-60649. [PMID: 39384673 DOI: 10.1007/s11356-024-35264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Dust resuspension rates in four different landscapes in Kuwait were estimated over a 2-year period using 7Be and 137Cs radionuclides. The average rates of resuspension of particles labeled with 7Be (2 × 10-3 ± 3.9 × 10-4 s-1) were much higher than those of particles labeled with 137Cs (1.6 × 10-6 ± 2.15 × 10-7 s-1), which indicates increased short-term fluctuations in recently deposited dust. Conversely, the resuspension rates for particles labeled with 137Cs were considerably lower, which better reflects long-term variations in dust resuspension. This evaluation approach may provide a foundation for future studies assessing the impact of suspended dust particulates on the performance of solar power systems, in conjunction with other influencing factors like vertical mass flux.
Collapse
Affiliation(s)
- Abdulaziz Aba
- Environmental and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait.
| | - Ali Al-Dousari
- Environmental and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait
| | - Anfal Ismaeel
- Environmental and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait
| | - Abdullah Al-Dabbous
- Environmental and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait
| | - Omar Alboloushi
- Environmental and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait
| | - Mashael Al-Jarba
- Environmental and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
2
|
Kaminski MD, Daiyega N, Magnuson M. A Review of the Resuspension of Radioactively Contaminated Particles by Vehicle and Pedestrian Traffic-Current Theory, Practice, Gaps, and Needs. HEALTH PHYSICS 2024; 126:216-240. [PMID: 38381971 DOI: 10.1097/hp.0000000000001797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
ABSTRACT The resuspension of radioactively contaminated particles in a built environment, such as from urban surfaces like foliage, building exteriors, and roadways, is described empirically by current plume and dosimetry models used for hazard assessment and long-term risk purposes. When applying these models to radiological contamination emergencies affecting urban areas, the accuracy of the results for recent contamination deposition is impacted in two main ways. First, the data supporting the underlying resuspension equations was acquired for open, quiescent conditions with no vehicle traffic or human activities, so it is not necessarily representative of the urban environment. Second, mechanical disturbance by winds in urban canyons and during emergency operations caused by vehicle traffic and human activities are not directly considered by the equations. Accordingly, plume and dosimetry models allow the user to input certain compensating values, but the models do not necessarily supply users instructions on what values to use. This manuscript reviews the available literature to comprehensively and consistently pool data for resuspension due to mechanically induced resuspension applicable to urban contamination. Because there are few studies that directly measured radioactive resuspension due to vehicles and pedestrians, this review novelly draws on a range of other studies involving non-radioactive particles, ranging from outdoor air pollution emissions to indoor allergen transport. The results lead to tabulated, recommended values for specific conditions in the emergency phase to help users of plume and dosimetry models maintain the conservativeness needed to properly capture the potential radiation dose posed by mechanically induced resuspension. These values are of benefit to model users until better data are available. The results also suggest the types of data that may result in improved plume and dose modeling.
Collapse
Affiliation(s)
| | - Nico Daiyega
- Department of Physics, University of Illinois, Urbana-Champaign
| | - Matthew Magnuson
- US Environmental Protection Agency, Office of Research and Development/Center for Environmental Solutions and Emergency Response/Homeland Security and Materials Management Division
| |
Collapse
|
3
|
Mrdakovic Popic J, Haanes H, Di Carlo C, Nuccetelli C, Venoso G, Leonardi F, Trevisi R, Trotti F, Ugolini R, Dvorzhak A, Escribano A, Perez Sanchez D, Real A, Michalik B, Pannecoucke L, Blanchart P, Kallio A, Pereira R, Lourenço J, Skipperud L, Jerome S, Fevrier L. Tools for harmonized data collection at exposure situations with naturally occurring radioactive materials (NORM). ENVIRONMENT INTERNATIONAL 2023; 175:107954. [PMID: 37187003 DOI: 10.1016/j.envint.2023.107954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Naturally occurring radioactive materials (NORM) contribute to the dose arising from radiation exposure for workers, public and non-human biota in different working and environmental conditions. Within the EURATOM Horizon 2020 RadoNorm project, work is ongoing to identify NORM exposure situations and scenarios in European countries and to collect qualitative and quantitative data of relevance for radiation protection. The data obtained will contribute to improved understanding of the extent of activities involving NORM, radionuclide behaviours and the associated radiation exposure, and will provide an insight into related scientific, practical and regulatory challenges. The development of a tiered methodology for identification of NORM exposure situations and complementary tools to support uniform data collection were the first activities in the mentioned project NORM work. While NORM identification methodology is given in Michalik et al., 2023, in this paper, the main details of tools for NORM data collection are presented and they are made publicly available. The tools are a series of NORM registers in Microsoft Excel form, that have been comprehensively designed to help (a) identify the main NORM issues of radiation protection concern at given exposure situations, (b) gain an overview of materials involved (i.e., raw materials, products, by-products, residues, effluents), c) collect qualitative and quantitative data on NORM, and (d) characterise multiple hazards exposure scenarios and make further steps towards development of an integrated risk and exposure dose assessment for workers, public and non-human biota. Furthermore, the NORM registers ensure standardised and unified characterisation of NORM situations in a manner that supports and complements the effective management and regulatory control of NORM processes, products and wastes, and related exposures to natural radiation worldwide.
Collapse
Affiliation(s)
- Jelena Mrdakovic Popic
- Norwegian Radiation and Nuclear Safety Authority (DSA), Grini Næringspark, 13, Østerås, Norway.
| | - Hallvard Haanes
- Norwegian Radiation and Nuclear Safety Authority (DSA), Grini Næringspark, 13, Østerås, Norway
| | - Christian Di Carlo
- National Institute of Health (ISS), National Centre for Radiation Protection and Computational Physics, Rome, Italy
| | - Cristina Nuccetelli
- National Institute of Health (ISS), National Centre for Radiation Protection and Computational Physics, Rome, Italy
| | - Gennaro Venoso
- National Institute of Health (ISS), National Centre for Radiation Protection and Computational Physics, Rome, Italy
| | - Federica Leonardi
- National Institute for Insurance Against Accidents at Work (INAIL), DiMEILA, Monteporzio Catone, Rome, Italy
| | - Rosabianca Trevisi
- National Institute for Insurance Against Accidents at Work (INAIL), DiMEILA, Monteporzio Catone, Rome, Italy
| | - Flavio Trotti
- Environmental Protection Agency of Veneto (ARPAV), Verona, Italy
| | | | - Alla Dvorzhak
- Research Centre on Energy, Environment and Technology (CIEMAT), Av. Complutense 40, Madrid 28040, Spain
| | - Alicia Escribano
- Research Centre on Energy, Environment and Technology (CIEMAT), Av. Complutense 40, Madrid 28040, Spain
| | - Danyl Perez Sanchez
- Research Centre on Energy, Environment and Technology (CIEMAT), Av. Complutense 40, Madrid 28040, Spain
| | - Almudena Real
- Research Centre on Energy, Environment and Technology (CIEMAT), Av. Complutense 40, Madrid 28040, Spain
| | - Boguslaw Michalik
- Central Mining Institute, Silesian Centre for Environmental Radioactivity (GIG), Plac Gwarków, 1, 40-166 Katowice, Poland
| | - Lea Pannecoucke
- Institute for Radiological Protection and Nuclear Safety, IRSN/PSE-ENV/SEDRE, 92260 Fontenay-aux-Roses, France
| | - Pascale Blanchart
- Institute for Radiological Protection and Nuclear Safety, IRSN/PSE-ENV/SEDRE, 92260 Fontenay-aux-Roses, France
| | - Antti Kallio
- Radiation and Nuclear Safety Authority, (STUK), Lähteentie 2, 96400 Rovaniemi, Finland
| | - Ruth Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences of the University of Porto, Campus de Vairão, Rua de Agrária, 747, Vila do Conde, Portugal
| | - Joana Lourenço
- Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Lindis Skipperud
- Norwegian University of Life Sciences (NMBU), Environmental Chemistry Section, P. O. Box 5003, 1432 Aas, Norway
| | - Simon Jerome
- Norwegian University of Life Sciences (NMBU), Environmental Chemistry Section, P. O. Box 5003, 1432 Aas, Norway
| | - Laureline Fevrier
- Institute for Radiological Protection and Nuclear Safety, IRSN/PSE-ENV/SRTE, 13115 Saint Paul-lez-Durance Cedex, France
| |
Collapse
|
4
|
Esan DT, Ajiboye Y, Obed RI, Ojo J, Adeola M, Sridhar MK. Measurement of Natural Radioactivity and Assessment of Radiological Hazard Indices of Soil Over the Lithologic Units in Ile-Ife Area, South-West Nigeria. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221100041. [PMID: 35645568 PMCID: PMC9134001 DOI: 10.1177/11786302221100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The distribution of natural radioactivity levels of 238U, 232Th, and 40K in soils overlying the 3 lithologic units within Obafemi Awolowo University, Ile-Ife, Nigeria was investigated to characterize the gamma radiation dose distribution over the lithologies and to assess the radiation hazard due to the natural radionuclides. A thallium-doped cesium iodide detector was employed to determine the activity concentrations of 238U, 232Th, and 40K in 21 soil samples. The respective average concentrations of the 3 radionuclides are 37.7, 3.2, and 245.6 Bq kg-1 for granite gneiss, 31.9, 2.8, and 241.1 Bq kg-1 for banded gneiss, and 21.1, 1.7, and 196.7 Bq kg-1 for mica schist. The average concentration of 238U in granite gneiss lithology exceeds the world average value. The evaluated values of radiation hazard parameters including average absorbed dose rate, outdoor annual effective dose and external hazard index are below the recommended limits. The spatial distribution of the radiation hazard parameters evaluated over the lithologies has been delineated. The highest average cancer risk of 1.15 per 10 000 population was obtained for the study area within the soil overlying the banded gneiss lithology. Generally, the radiation hazard from the soils in study area poses no significant health hazard.
Collapse
Affiliation(s)
| | | | - Rachel I Obed
- University of Ibadan Faculty of Science, Ibadan, Nigeria
| | - Joshua Ojo
- Obafemi Awolowo University, Ife, Nigeria
| | | | | |
Collapse
|
5
|
De Meutter P, Gueibe C, Tomas J, Outer PD, Apituley A, Bruggeman M, Camps J, Delcloo A, Knetsch GJ, Roobol L, Verheyen L. The assessment of the April 2020 chernobyl wildfires and their impact on Cs-137 levels in Belgium and The Netherlands. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106688. [PMID: 34247013 DOI: 10.1016/j.jenvrad.2021.106688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
In April 2020, several wildfires took place in and around the Chernobyl exclusion zone. These fires reintroduced radioactive particles deposited during the 1986 Chernobyl disaster into the atmosphere, causing concern about a possible radiation hazard. Several countries and several stations of the International Monitoring System measured increased Cs137 levels. This study presents the analyses made by RIVM and SCK CEN/RMI during the April 2020 wildfires. Furthermore, more in-depth research was performed after the wildfires. A statistical analysis of Cs137 detections is presented, comparing the April 2020 detections with historical detections. Inverse atmospheric transport modelling is applied to infer the total released Cs137 during the wildfires. Finally, it is assessed whether the Cs137 detections in Belgium and the Netherlands can be attributed to the wildfires.
Collapse
Affiliation(s)
| | | | - Jasper Tomas
- National Institute for Public Health and the Environment (RIVM). P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | - Peter den Outer
- National Institute for Public Health and the Environment (RIVM). P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | - Arnoud Apituley
- Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, NL-3731, GA De Bilt, the Netherlands
| | | | | | - Andy Delcloo
- Royal Meteorological Institute of Belgium (RMI), Ringlaan 3, 1180, Brussel, Belgium
| | - Gert-Jan Knetsch
- National Institute for Public Health and the Environment (RIVM). P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | - Lars Roobol
- National Institute for Public Health and the Environment (RIVM). P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | | |
Collapse
|