1
|
Li XT, Zhou JC, Zhou Y, Ren YS, Huang YH, Wang SM, Tan L, Yang ZY, Ge YW. Pharmacological effects of Eleutherococcus senticosus on the neurological disorders. Phytother Res 2022; 36:3490-3504. [PMID: 35844057 DOI: 10.1002/ptr.7555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/07/2022]
Abstract
Eleutherococcus senticosus is a medicinal plant widely used in traditional medicine and edible remedies with effects on anti-fatigue, sleep improvement, and memory enhancement. Recently, the application of E. senticosus to neurological disorders has been a focus. However, its overall pharmacological effect on neural diseases and relevant mechanisms are needed in an in-depth summary. In this review, the traditional uses and the therapeutic effect of E. senticosus on the treatment of fatigue, depression, Alzheimer's disease, Parkinson's disease, and cerebral ischemia were summarized. In addition, the underlying mechanisms involved in the anti-oxidative damage, anti-inflammation, neurotransmitter modulation, improvement of neuronal growth, and anti-apoptosis were discussed. This review will accelerate the understanding of the neuroprotective effects brought from the E. senticosus, and impetus its development as a phytotherapy agent against neurological disorders.
Collapse
Affiliation(s)
- Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying-Shan Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Hong Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Long Tan
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Liu M, Xiong Y, Shan S, Zhu Y, Zeng D, Shi Y, Zhang Y, Lu W. Eleutheroside E Enhances the Long-Term Memory of Radiation-Damaged C. elegans through G-Protein-Coupled Receptor and Neuropeptide Signaling Pathways. JOURNAL OF NATURAL PRODUCTS 2020; 83:3315-3323. [PMID: 33196193 DOI: 10.1021/acs.jnatprod.0c00650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eleutheroside E (EE), a principal active compound of Acanthopanax senticosus, has been shown to have a certain neuromodulation effect. Our previous study indicates that EE protects nerve damage caused by radiation. However, its specific function and underlying mechanism remain unknown. Therefore, the objective of this study is to apply the C. elegans model to illuminate the property and mechanism of EE protecting against nerve damage caused by radiation. Here, we found that EE significantly improved the long-term memory of radiation-damaged C. elegans. Through transcriptome sequencing, the results showed that EE protected radiation-damaged C. elegans mainly through G-protein-coupled receptor and neuropeptide signaling pathways. Further research indicated that EE affected the activity of CREB by cAMP-PKA, Gqα-PLC, and neuropeptide signaling pathways to ultimately improve the long-term memory of radiation-damaged C. elegans. In addition, the activity of Gqα and neuropeptides in AWC neurons and the activity of CREB in AIM neurons might be crucial for EE to function.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Yi Xiong
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Yuanbing Zhu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Deyong Zeng
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Yudong Shi
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
- Inner Mongolia Mengniu Dairy Co., Ltd., Inner Mongolia 011500, China
| | - Yingchun Zhang
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
3
|
Zhai C, Wang M, Raman V, Rehman JU, Meng Y, Zhao J, Avula B, Wang YH, Tian Z, Khan IA. Eleutherococcus senticosus (Araliaceae) Leaf Morpho-Anatomy, Essential Oil Composition, and Its Biological Activity Against Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:658-669. [PMID: 28399215 DOI: 10.1093/jme/tjw221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 06/07/2023]
Abstract
The roots of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., a well-known medicinal plant from Eastern Asia, are used worldwide for their known beneficial medicinal properties. Recently, the leaves have been used as an alternative to the roots. The present study was aimed at exploring the leaf essential oil as a potential source of compounds for mosquito management. Gas chromatography/mass spectrometry analysis of the leaf essential oil revealed 87 compounds, constituting 95.2% of the oil. α-Bisabolol (26.46%), β-caryophyllene (7.45%), germacrene D (6.87%), β-bisabolene (4.95%), and α-humulene (3.50%) were five of the major constituents. The essential oil was subjected to biting deterrence and repellent activity against mosquito Aedes aegypti. The biting deterrence of the oil produced a proportion not biting (PNB) value of 0.62 at 10 µg/cm2 as compared with 0.86 of control DEET (N,N-diethyl-3-methylbenzamide) at a standard dose of 25 nmol/cm2. Among individually selected compounds present in the oil (α-bisabolol, β-caryophyllene, α-humulene, and caryophyllene oxide), only α-bisabolol produced a PNB value of 0.80, equivalent to DEET at 25 nmol/cm2, whereas the others were not repellent. The artificial mixture (AMES-1) of these four selected compounds produced a relatively high PNB value of 0.80. The repellent activity measured by minimum effective dosage (MED) for α-bisabolol and α-humulene produced MED values of 0.094 and 0.104 mg/cm2, respectively, as compared with 0.023 mg/cm2 of DEET. The leaf essential oil, the artificial mixture (AMES-1), and other binary and tertiary combinations of major compounds showed no repellent activity. In addition, morpho-anatomical features of the leaf are provided for correct identification of the species.
Collapse
Affiliation(s)
- Chunmei Zhai
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 ( ; ; ; ; ; ; ; ; )
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province 150040, China
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Vijayasankar Raman
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Junaid U Rehman
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Yonghai Meng
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 ( ; ; ; ; ; ; ; ; )
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province 150040, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Zhenkun Tian
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province 150040, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 ( ; ; ; ; ; ; ; ; )
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677
| |
Collapse
|
4
|
Kim TW, Kim CJ, Seo J. Effects of colostrum serum on the serotonergic system in the dorsal raphe nuclei of exercised rats. J Exerc Nutrition Biochem 2017; 21:33-39. [PMID: 28712263 PMCID: PMC5508057 DOI: 10.20463/jenb.2017.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The central fatigue hypothesis suggests that exhaustion, or the maximum level of exercise, induces excessive stress and increases serotonin concentrations in the brain, which in turn decreases central nervous system (CNS) function and induces fatigue. Our aim was to determine the effects of colostrum serum on the serotonergic system in the dorsal raphe nuclei during exhaustive exercise. [Methods] Animals were randomly divided into five groups: control, exercise, exercise and treatment with 50, 100, and 200 mg/kg of colostrum serum. The rats in the colostrum serum treatment groups were fed colostrum serum at three different doses of 50, 100, and 200 mg/kg per day for seven days. The rats in the control and exercise groups received water by oral gavage once per day for seven days. [Results] The time to exhaustion in response to treadmill running increased after treatment with colostrum serum. These results show that exhaustive exercise led to over activation of the serotonergic system in the dorsal raphe nuclei, and that treatment with colostrum serum suppressed of the exercise-induced expression of tryptophan hydroxylase (TPH) and serotonin (5-HT). The results also indicated that exhaustive exercise induced 5-HT1A autoreceptor and serotonin transporter (5-HTT) overexpression in the dorsal raphe nuclei, and that colostrum serum treatment suppressed exhaustive exercise-induced 5-HT1A and 5-HTT expression in the dorsal raphe nuclei. The most effective dose of colostrum serum was 100 mg/kg. [Conclusion] Overall, our study suggests that colostrum serum has positive effects on exercise performance and recovery by increasing the resistance to fatigue.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Jinhee Seo
- Division of Adaptive Physical Education, Baek Seok University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Jones AB, Gupton R, Curtis KS. Estrogen and voluntary exercise interact to attenuate stress-induced corticosterone release but not anxiety-like behaviors in female rats. Behav Brain Res 2016; 311:279-286. [PMID: 27247143 DOI: 10.1016/j.bbr.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 01/13/2023]
Abstract
The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress.
Collapse
Affiliation(s)
- Alexis B Jones
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States
| | - Rebecca Gupton
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States.
| |
Collapse
|
6
|
Jiang Y, Wang MH. Different solvent fractions of Acanthopanax senticosus harms exert antioxidant and anti-inflammatory activities and inhibit the human Kv1.3 channel. J Med Food 2014; 18:468-75. [PMID: 25340513 DOI: 10.1089/jmf.2014.3182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential antioxidant and anti-inflammatory activities of Acanthopanax senticosus Harms were evaluated and its effect on the human Kv1.3 potassium channel was detected. The ethyl acetate fraction possessed the highest phenolic (289.19±7.43 mg tannic acid equivalents/g) and flavonoid (10.80±0.67 mg quercetin equivalents/g) contents and exhibited stronger antioxidant effects than other fractions in most of the antioxidant assays. On the other hand, the dichloromethane (CH(2)Cl(2)) fraction showed the strongest anti-inflammatory activity. The CH(2)Cl(2) fraction inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α and interleukin 1β mRNAs, and the generation of reactive oxygen species in lipopolysaccharide-induced RAW 264.7 cells. Also, the peak current was inhibited 54.8%±17% by the CH(2)Cl(2) fraction in voltage-clamp recording from Xenopus laevis oocytes. Our research demonstrated that fractions of A. senticosus have great potential to be a source of edible antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Yunyao Jiang
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University , Chuncheon, Korea
| | | |
Collapse
|
7
|
Biotechnological production of eleutherosides: current state and perspectives. Appl Microbiol Biotechnol 2014; 98:7319-29. [DOI: 10.1007/s00253-014-5899-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
8
|
UPLC-MS based metabolic profiling of the phenotypes of Acanthopanax senticosus reveals the changes in active metabolites distinguishing the diversities of the. Chin J Nat Med 2012. [DOI: 10.3724/sp.j.1009.2012.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
SEO JH, SUNG YH, KIM KJ, SHIN MS, LEE EK, KIM CJ. Effects of Phellinus linteus Administration on Serotonin Synthesis in the Brain and Expression of Monocarboxylate Transporters in the Muscle during Exhaustive Exercise in Rats. J Nutr Sci Vitaminol (Tokyo) 2011; 57:95-103. [DOI: 10.3177/jnsv.57.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jin-Hee SEO
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Yun-Hee SUNG
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Ki-Jeong KIM
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Mal-Soon SHIN
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Eun-Kyu LEE
- Department of Physiology, College of Medicine, Kyung Hee University
- Department of Internal Medicine, Andong Medical Group
| | - Chang-Ju KIM
- Department of Physiology, College of Medicine, Kyung Hee University
| |
Collapse
|