1
|
Hong CR, Lee EH, Jung YH, Lee JH, Paik HD, Hong SC, Choi SJ. Development and Characterization of Inula britannica Extract-Loaded Liposomes: Potential as Anti-Inflammatory Functional Food Ingredients. Antioxidants (Basel) 2023; 12:1636. [PMID: 37627631 PMCID: PMC10451523 DOI: 10.3390/antiox12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the potential of Inula britannica extract encapsulated in liposomes as a functional food ingredient with enhanced bioavailability and stability. Inula britannica, known for its anti-inflammatory properties and various health benefits, was encapsulated using a liposome mass production manufacturing method, and the physical properties of liposomes were evaluated. The liposomes exhibited improved anti-inflammatory effects in lipopolysaccharide-activated RAW 264.7 macrophages, suppressing the production of pro-inflammatory mediators such as nitric oxide and prostaglandin E2 and downregulating the expression of iNOS and COX-2 transcription factors. Additionally, we observed reduced production of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and modulation of the NF-κB and mitogen-activated protein kinase signaling pathways. These findings suggest that Inula britannica extract encapsulated in liposomes could serve as a valuable functional food ingredient for managing and preventing inflammation-related disorders, making it a promising candidate for incorporation into various functional food products. The enhanced absorption and stability provided by liposomal encapsulation can enable better utilization of the extract's beneficial properties, promoting overall health and well-being.
Collapse
Affiliation(s)
- Chi Rac Hong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun Ha Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea;
| | - Sung-Chul Hong
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Seung Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
- Center for Functional Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
2
|
Li J, Wang H, Shi X, Zhao L, Lv T, Yuan Q, Hao W, Zhu J. Anti-proliferative and anti-migratory effects of Scutellaria strigillosa Hemsley extracts against vascular smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:155-163. [PMID: 30763696 DOI: 10.1016/j.jep.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The abnormal increase in vascular smooth muscle cell (VSMC) proliferation and migration are critical events in the pathogenesis of cardiovascular diseases (CVDs) including restenosis and atherosclerosis. The dried roots of Scutellaria baicalensis Georgi (common name: Huangqin in China) have been confirmed to possess beneficial effects on CVD by clinical and modern pharmacological studies. Flavonoids in Huangqin exert anti-proliferative and anti-migratory effects. Similar to Huangqin, Scutellaria strigillosa Hemsley (SSH) has been used to clear heat and damp and is especially rich in flavonoids including wogonin, wogonoside, baicalein, and baicalin. However, there have been few of reports about pharmacological activities of SSH. AIM OF THE STUDY To investigate the anti-proliferative and anti-migratory properties of Scutellaria strigillosa Hemsley extract (SSHE) in vitro and in vivo and explore its possible mechanism of action. MATERIALS AND METHODS The chemical constituents of SSHE were analyzed by ultra-high performance liquid chromatography coupled with triple time-of-flight mass spectrometry (UPLC-Triple-TOF-MS/MS). Cell proliferation and migration were investigated using BrdU incorporation assay and cell scratch test, respectively. The protein expression was determined by western blotting. In vivo, we established an artery ligation model of C57BL/6 mice and orally administered them with 50 or 100 mg/kg/day of SSHE. The carotid arteries were harvested and the intima-media thickness was examined 28 days post-ligation. RESULTS Twelve compounds were identified and tentatively characterized. SSHE significantly inhibited the VSMC proliferation and migration stimulated by PDGF-BB and decreased the relative protein expression of regulatory signaling intermediates. Furthermore, the expression of SM22α was significantly elevated in SSHE-pretreated VSMCs, whereas knockdown of SM22α impaired the PDGF-BB-induced proliferation and migration arrest. Meanwhile, both ROS generation and the phosphorylation of ERK decreased in SSHE-pretreated VSMCs. In carotid artery ligation mice model, SSHE treatment significantly inhibited neointimal hyperplasia. CONCLUSIONS SSHE significantly inhibited the PDGF-BB-induced VSMC proliferation, migration, and neointimal hyperplasia of carotid artery caused by ligation. Upregulation of SM22α expression, inhibition of ROS generation and ERK phosphorylation were, at least, partly responsible for the effects of SSHE on VSMCs.
Collapse
MESH Headings
- Animals
- Becaplermin/administration & dosage
- Carotid Intima-Media Thickness
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Plant Extracts/administration & dosage
- Plant Extracts/pharmacology
- Rats
- Scutellaria/chemistry
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Jiankun Li
- The Forth Affiliated Hospital of Hebei Medical University, No. 12 Health Road, Shijiazhuang 050011, PR China.
| | - Hairong Wang
- Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| | - Xiaowei Shi
- Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| | - Lili Zhao
- Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| | - Tao Lv
- Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| | - Qi Yuan
- Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| | - Wenyang Hao
- Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| | - Jing Zhu
- Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| |
Collapse
|
3
|
Antiaging Effect of Inula britannica on Aging Mouse Model Induced by D-Galactose. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6049083. [PMID: 27066100 PMCID: PMC4811090 DOI: 10.1155/2016/6049083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
The antiaging effect of Inula britannica flower total flavonoids (IBFTF) on aging mice induced by D-galactose and its mechanism was examined in this study. From the results, the biochemical indexes and histological analysis of skin tissues showed that IBFTF could effectively improve the antioxidant enzyme activity of the aging mice, enhance the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) of skin tissue, and decrease the malondialdehyde (MDA) content. Besides, IBFTF could maintain the skin collagen, hydroxyproline (Hyp), dermal thickness, and moisture content. Meanwhile, IBFTF could significantly reduce the number of cells arrested in G0/G1 phase, and from the point of view of protein and mRNA expression level in skin tissue, IBFTF could significantly increase the expression of Sirt1 and CyclinD1 but decrease the expression of p16 and p21, and its effect was not less than that of the well-known vitamin E (VE). Overall, these results seem to be implying that IBFTF is a potential natural anti-skin aging agent with great antioxidant ability.
Collapse
|
4
|
Mahmoudi H, Hosni K, Zaouali W, Amri I, Zargouni H, Hamida NB, Kaddour R, Hamrouni L, Nasri MB, Ouerghi Z. Comprehensive Phytochemical Analysis, Antioxidant and Antifungal Activities of Inula viscosa
Aiton Leaves. J Food Saf 2015. [DOI: 10.1111/jfs.12215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hela Mahmoudi
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Karim Hosni
- Laboratoire des Substances Naturelles; Institut National de Recherche et d'Analyse Physico-Chimique; Sidi Thabet Tunisia
| | - Wafa Zaouali
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Ismail Amri
- Laboratory for Forest Ecology; National Institute for Research in Rural Engineering, Water and Forests; BP 10, 2080 Ariana Tunisia
| | - Hanene Zargouni
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Nesrine Ben Hamida
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Rym Kaddour
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Lamia Hamrouni
- Laboratory for Forest Ecology; National Institute for Research in Rural Engineering, Water and Forests; BP 10, 2080 Ariana Tunisia
| | - Mouhiba Ben Nasri
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Zeineb Ouerghi
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| |
Collapse
|
5
|
Li H, Li W, Yu M, Jiang L. LC-MS/MS determination of 1-O-acetylbritannilactone in rat plasma and its application to a preclinical pharmacokinetic study. Biomed Chromatogr 2015; 30:419-25. [PMID: 26179842 DOI: 10.1002/bmc.3564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
Abstract
A novel, rapid and sensitive LC-MS/MS method for the determination of 1-O-Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol-5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60-800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra- and inter-day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half-lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration-time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested.
Collapse
Affiliation(s)
- Huajun Li
- Cadres Ward, Air Force General Hospital, PLA, Beijing, 100142, China
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| | - Min Yu
- Health Center, 9524 Command, PLA, Beijing, 100195, China
| | - Ligang Jiang
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| |
Collapse
|
6
|
Seca AML, Grigore A, Pinto DCGA, Silva AMS. The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:286-310. [PMID: 24754913 DOI: 10.1016/j.jep.2014.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Inula comprises more than one hundred species widespread in temperate regions of Europe and Asia. Uses of this genus as herbal medicines have been first recorded by the Greek and Roman ancient physicians. In the Chinese Pharmacopoeia, from the 20 Inula spp. distributed in China, three are used as Traditional Chinese medicines, named Tumuxiang, Xuanfuhua and Jinfeicao. These medicines are used as expectorants, antitussives, diaphoretics, antiemetics, and bactericides. Moreover, Inula helenium L. which is mentioned in Minoan, Mycenaean, Egyptian/Assyrian pharmacotherapy and Chilandar Medical Codex, is good to treat neoplasm, wound, freckles and dandruff. Many other Inula spp. are used in Ayurvedic and Tibetan traditional medicinal systems for the treatment of diseases such as bronchitis, diabetes, fever, hypertension and several types of inflammation. This review is a critical evaluation of the published data on the more relevant ethnopharmacological and medicinal uses of Inula spp. and on their metabolites biological activities. This study allows the identification of the ethnopharmacological knowledge of this genus and will provide insight into the emerging pharmacological applications of Inula spp. facilitating the prioritirization of future investigations. The corroboration of the ethnopharmacological applications described in the literature with proved biological activities of Inula spp. secondary metabolites will also be explored. MATERIALS AND METHODS The major scientific databases including ScienceDirect, Medline, Scopus and Web of Science were queried for information on the genus Inula using various keyword combinations, more than 180 papers and patents related to the genus Inula were consulted. The International Plant Name Index was also used to confirm the species names. RESULTS Although the benefits of Inula spp. are known for centuries, there are insufficient scientific studies to certify it. Most of the patents are registered by Chinese researchers, proving the traditional use of these plants in their country. Although a total of sixteen Inula species were reported in the literature to have ethnopharmacological applications, the species Inula cappa (Buch.-Ham. ex D.Don) DC., Inula racemosa Hook.f., Inula viscosa (L.) Aiton [actually the accepted name is Dittrichia viscosa (L.) Greuter], Inula helenium, Inula britannica L. and Inula japonica Thunb. are the most frequently cited ones since their ethnopharmacological applications are vast. They are used to treat a large spectrum of disorders, mainly respiratory, digestive, inflammatory, dermatological, cancer and microbial diseases. Fifteen Inula spp. crude extracts were investigated and showed interesting biological activities. From these, only 7 involved extracts of the reported spp. used in traditional medicine and 6 of these were studied to isolate the bioactive compounds. Furthermore, 90 bioactive compounds were isolated from 16 Inula spp. The characteristic compounds of the genus, sesquiterpene lactones, are involved in a network of biological effects, and in consequence, the majority of the experimental studies are focused on these products, especially on their cytotoxic and anti-inflammatory activities. The review shows the chemical composition of the genus Inula and presents the pharmacological effects proved by in vitro and in vivo experiments, namely the cytotoxic, anti-inflammatory (with focus on nitric oxide, arachidonic acid and NF-κB pathways), antimicrobial, antidiabetic and insecticidal activities. CONCLUSIONS Although there are ca. 100 species in the genus Inula, only a few species have been investigated so far. Eight of the sixteen Inula spp. with ethnopharmacological application had been subjected to biological evaluations and/or phytochemical studies. Despite Inula royleana DC. and Inula obtusifolia A. Kerner are being used in traditional medicine, as far as we are aware, these species were not subjected to phytochemical or pharmacological studies. The biological activities exhibited by the compounds isolated from Inula spp., mainly anti-inflammatory and cytotoxic, support some of the described ethnopharmacological applications. Sesquiterpene lactone derivatives were identified as the most studied class, being britannilactone derivatives the most active ones and present high potential as anti-inflammatory drugs, although, their pharmacological effects, dose-response relationship and toxicological investigations to assess potential for acute or chronic adverse effects should be further investigated. The experimental results are promising, but the precise mechanism of action, the compound or extract toxicity, and the dose to be administrated for an optimal effect need to be investigated. Also human trials (some preclinical studies proved to be remarkable) should be further investigated. The genus Inula comprises species useful not only in medicine but also in other domains which makes it a high value-added plant.
Collapse
Affiliation(s)
- Ana M L Seca
- DCTD, University of Azores, 9501-801 Ponta Delgada, Portugal; Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Alice Grigore
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical-Pharmaceutical R&D, 112 Vitan Av., Bucharest, Romania.
| | - Diana C G A Pinto
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Inulae Flos and Its Compounds Inhibit TNF-α- and IFN-γ-Induced Chemokine Production in HaCaT Human Keratinocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:280351. [PMID: 22919411 PMCID: PMC3420336 DOI: 10.1155/2012/280351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 12/29/2022]
Abstract
The present study is to investigate which kinds of solvent extracts of Inulae Flos inhibit the chemokine productions in HaCaT cell and whether the inhibitory capacity of Inulae Flos is related with constitutional compounds. The 70% methanol extract showed comparatively higher inhibition of thymus and activation-regulated chemokine (TARC/CCL17) in HaCaT cells, therefore this extract was further partitioned with n-hexane, chloroform, ethyl acetate, butanol, and water. The ethyl acetate fraction inhibited TARC, macrophage-derived chemokine (MDC/CCL22), and regulated on activation of normal T-cell-expressed and -secreted (RANTES/CCL5) production in HaCaT cells better than the other fractions. The compounds of Inulae Flos, such as 1,5-dicaffeoylquinic acid and luteolin, inhibited TARC, MDC, and RANTES production in HaCaT cells. 1,5-Dicaffeoylquinic acid was contained at the highest concentrations both in the 70% methanol extract and ethyl acetate fraction and inhibited the secretion of chemokines dose-dependently more than the other compounds. Luteolin also represented dose-dependent inhibition on chemokine productions although it was contained at lower levels in 70% methanol extract and solvent fractions. These results suggest that the inhibitory effects of Inulae Flos on chemokine production in HaCaT cell could be related with constituent compounds contained, especially 1,5-dicaffeoylquinic acid and luteolin.
Collapse
|
8
|
Vasta V, Luciano G. The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2011.09.035] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhang HB, Wen JK, Zhang J, Miao SB, Ma GY, Wang YY, Zheng B, Han M. Flavonoids from Inula britannica reduces oxidative stress through inhibiting expression and phosphorylation of p47(phox) in VSMCs. PHARMACEUTICAL BIOLOGY 2011; 49:815-820. [PMID: 21500971 DOI: 10.3109/13880209.2010.550055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Inula britanica Linn. (Compositae) is a traditional Chinese medicinal herb that has been used to treat bronchitis and inflammation. The total flavonoid extracts (TFEs) isolated from its flowers can inhibit neointimal formation induced by balloon injury in vivo. OBJECTIVE To investigate the mechanism by which TFE suppresses oxidative stress generation and the subsequent inflammation response in vitro. MATERIALS AND METHODS The cultured vascular smooth muscle cells (VSMCs) form rats were exposed to oxidative stress following pretreatment with or without TFE at different concentration. Then, fluorescence staining was used to detect superoxide anion (O₂(˙-)) production, and the lever of maleic dialdehyde (MDA) and superoxide dismutase (SOD) was measured at the same time. Furthermore, tumor necrosis factor-α (TNF-α) was measured by enzyme linked immunosorbent assay (ELISA), reverse transcription-PCR and western blot were performed to detect the expression activity of p47(phox) gene, and immunoprecipitation was used to test the level of p47(phox) phosphorylation. RESULTS TFE inhibited the production of O₂(˙-) induced by H₂O₂ in VSMCs, with decrease in secretion of TNF-α; elevated the activity of SOD in the medium, similar to the effect of quercetin; reduced the level of MDA in culture medium of VSMCs. The pretreatment with TFE resulted in decrease the level of p47(phox) mRNA and protein, and even p47(phox) phosphorylation in VSMCs, compared with H₂O₂ control. DISCUSSION AND CONCLUSION These findings demonstrate that TFE is capable of attenuating the oxidative stress generation and the subsequent inflammation response via preventing the overexpression and activation of p47(phox) and the increased TNF-α secretion in VSMCs in vitro.
Collapse
Affiliation(s)
- Hong-Bing Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medicine, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Weakley SM, Wang X, Mu H, Lü J, Lin PH, Yao Q, Chen C. Ginkgolide A-gold nanoparticles inhibit vascular smooth muscle proliferation and migration in vitro and reduce neointimal hyperplasia in a mouse model. J Surg Res 2011; 171:31-9. [PMID: 21571322 DOI: 10.1016/j.jss.2011.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/17/2011] [Accepted: 03/04/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Neointimal formation is mediated by phenotypic changes in vascular smooth muscle cells (SMC) and is an important mediator of restenosis following arterial reconstruction. We conjugated antioxidant ginkgolide A (GA) to gold nanoparticles (GNP) to determine the effect of GA delivery on neointimal formation. MATERIALS AND METHODS GA was conjugated to 80 nm GNP in an overnight incubation. Mouse P53LMAC01 vascular SMC were treated with various doses of GA-GNP, GA alone, GNP alone, and no treatment control. Cell proliferation and migration were analyzed, and superoxide anion levels and the phosphorylation status of ERK1/2 were determined. Mice underwent ligation of the common carotid artery along with local treatment with GNP (control) or GA-GNP. The carotid artery was harvested and subjected to immunohistochemical analysis. RESULTS GA-GNP treatment significantly inhibited SMC proliferation and migration in vitro in comparison to GNP treatment alone, and the effect persisted for up to 72 h after treatment. Treatment with GA-GNP also reduced superoxide anion levels in vitro. PDGF-BB substantially induced ERK1/2 phosphorylation in GNP control cells; this PDGE-BB induced ERK1/2 phosphorylation was significantly inhibited in GA-GNP-treated cells compared with GNP only. GA-GNP significantly reduced neointimal hyperplasia after injury in mice, and proliferating cell nuclear antigen (PCNA) staining was reduced substantially in the arteries of mice treated with GA-GNP. CONCLUSIONS GA-GNP reduce vascular SMC proliferation and migration in vitro through reduced activation of ERK1/2. Local treatment with GA-GNP in areas of arterial injury reduced neointimal hyperplasia and subsequent stenosis.
Collapse
Affiliation(s)
- Sarah M Weakley
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|