1
|
Lin TB, Hsieh CC, Wang CH, Chang CH, Hsueh YL, Tseng YT, Hsieh MF. Comparing Cancer Risks and Mortality between Phytopharmaceuticals and Estrogen-Progestogen Medications for Menopausal Women: A Population-Based Cohort Study. Healthcare (Basel) 2024; 12:1220. [PMID: 38921335 PMCID: PMC11202969 DOI: 10.3390/healthcare12121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
We evaluated the long-term risks of overall cancer and all-cause mortality associated with five types of phytopharmaceuticals and the most commonly used estrogen-progestogen medications for the treatment of postmenopausal syndrome in women. Using data from Taiwan's National Health Insurance Research Database (NHIRD) from 1 January 2000 to 31 December 2018, we conducted a 1:2 matched cohort study with 12,087 eligible patients. We compared phytopharmaceuticals -only users (n = 4029, phytopharmaceuticals group) with HRT-only users (n = 8058, HRT group) with a washout period of ≥6 months. The phytopharmaceuticals group had significantly lower risks of overall cancer and all-cause mortality than the HRT group (adjusted hazard ratio [95% confidence interval]: 0.60 [0.40-0.9] and 0.40 [0.16-0.99], respectively) after over 180 days of use. Bupleurum and Peony Formula were associated with lower risks of overall cancer and all-cause mortality (aHR: 0.57 [0.36-0.92] and 0.33 [0.11-1.05], respectively). In conclusion, phytopharmaceuticals may serve as an alternative therapy to HRT for alleviating menopausal symptoms and reducing health risks, leading to more favorable long-term health outcomes. Further randomized control trials are necessary to validate the findings of this study.
Collapse
Affiliation(s)
- Tsai-Bei Lin
- Department of Obstetrics and Gynecology, Bao Hua Tang Traditional Chinese Medicine Clinic, Tainan 701033, Taiwan;
| | - Chia-Chi Hsieh
- Departments of Nursing, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan
- Departments of Nursing, Show Chwan Memorial Hospital, Changhua City 500009, Taiwan
| | - Chun-Hsiang Wang
- Department of Hepatogastroenterology, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan 701033, Taiwan
| | - Chiung-Hung Chang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan 701033, Taiwan
| | - Yu-Ling Hsueh
- Department of Obstetrics and Gynecology, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan 701033, Taiwan
| | - Yuan-Tsung Tseng
- Department of Medical Research, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan 701033, Taiwan;
| | - Men-Fong Hsieh
- Department of Obstetrics and Gynecology, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan 701033, Taiwan
| |
Collapse
|
2
|
Ma L, Bai Y, Liu J, Gong K, He Q, Zhao J, Suo Y, Wang W, Chen G, Lu Z. The therapeutic effects of traditional Chinese medicine on insulin resistance in obese mice by modulating intestinal functions. Heliyon 2024; 10:e30379. [PMID: 38765147 PMCID: PMC11101725 DOI: 10.1016/j.heliyon.2024.e30379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Obesity, mainly caused by excessive accumulation of visceral fat, excessive fat metabolism will cause hormone secretion imbalance and inflammation and other diseases. is extremely detrimental to human health. Although many treatments are available for obesity, most treatments fail to exert a radical effect or are associated with several side effects. Traditional Chinese medicine (TCM) for regulating the intestinal flora, lipid content and inflammation is considered effective. Based on previous studies, Artemisia capillaris, Astragalus propinquus, Phellodendron amurense, Salvia miltiorrhiza, Poria cocos, and Anemarrhena asphodeloides were selected to prepare an innovative herbal formula. Methods TCM was characterized by UHPLC-Q-Orbitrap-MS. The anti-inflammatory and lipid-lowering effects of the TCM formula prepared were evaluated in a high-fat diet-fed obese mouse model. The effects of the TCM formula on the intestinal flora were also investigated. Results Weights and insulin resistance, as well as inflammation, decreased in the mice after treatment. At the same time, lipid metabolism increased after the mice were gavaged with the TCM formula for 2 weeks. The intestinal motility of the drug administration group was enhanced, with partial restoration of the intestinal flora. Conclusion In summary, our innovative Chinese herbal formula significantly reduced weight, reduced intestinal inflammation, improved intestinal motility, and improved lipid metabolism in obese mice. Furthermore, the innovative formula effectively prevented relevant obesity-induced metastatic diseases in the mice.
Collapse
Affiliation(s)
- Lirong Ma
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Yongquan Bai
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Kaimin Gong
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Qirui He
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Jintao Zhao
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Yina Suo
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Wenwen Wang
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| | - Guo Chen
- Translational Medicine Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- Translational Medicine Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Yi C, Zou H, Lin X, Liu S, Wang J, Tian Y, Deng X, Luo J, Li C, Long Y. Zhibai dihuang pill (ZBDH) exhibits therapeutic effects on idiopathic central sexual precocity in rats by modulating the gut microflora. Heliyon 2024; 10:e29723. [PMID: 38707434 PMCID: PMC11066310 DOI: 10.1016/j.heliyon.2024.e29723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
To reveal the role of gut microbiota (GM) in the occurrence and development of idiopathic central precocious puberty (ICPP) using 16S rDNA sequencing and bioinformatics analysis. The Danazol-induced ICPP model was successfully constructed in this study. ZBDH and GnRHa treatments could effectively inhibit ICPP in rats, as manifested by the delayed vaginal opening time, reduced weight, decreased uterine organ coefficient, and decreased uterine wall thickness and corpus luteum number, as well as remarkably reduced serum hormone (LH, FSH, and E2) levels. According to 16S rDNA sequencing analysis results, there was no significant difference in the GM community diversity across different groups; however, the composition of the microbial community and the abundance of the dominant microbial community were dramatically different among groups. ZBDH and GnRHa treatments could effectively reduce the abundance of Muribaculateae and Lactobacillus and promote Prevotella abundance. ZBDH and GnRHa were effective in treating Danazol-induced ICPP model rats. The therapeutic effects of ZBDH and GnRHa could be related to the changes in GM in rats.
Collapse
Affiliation(s)
- Canhong Yi
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Hui Zou
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xiaojuan Lin
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Shanshan Liu
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Juan Wang
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yuquan Tian
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xujing Deng
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Jianhong Luo
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Chan Li
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yin Long
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| |
Collapse
|
4
|
Wang L, Chen Z, Liu X, Wang L, Zhou Y, Huang J, Liu Z, Lin D, Liu L. GLP-1 Receptor Agonist Improves Mitochondrial Energy Status and Attenuates Nephrotoxicity In Vivo and In Vitro. Metabolites 2023; 13:1121. [PMID: 37999218 PMCID: PMC10672795 DOI: 10.3390/metabo13111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
High-sugar and high-fat diets cause significant harm to health, especially via metabolic diseases. In this study, the protective effects of the antidiabetic drug exenatide (synthetic exendin-4), a glucagon-like peptide 1 (GLP-1) receptor agonist, on high-fat and high-glucose (HFHG)-induced renal injuries were investigated in vivo and in vitro. In vivo and in vitro renal injury models were established. Metabolomic analysis based on 1H-nuclear magnetic resonance was performed to examine whether exenatide treatment exerts a protective effect against kidney injury in diabetic rats and to explore its potential molecular mechanism. In vivo, 8 weeks of exenatide treatment resulted in the regulation of most metabolites in the diabetes mellitus group. In vitro results showed that exendin-4 restored the mitochondrial functions of mesangial cells, which were perturbed by HFHG. The effects of exendin-4 included the improved antioxidant capacity of mesangial cells, increased the Bcl-2/Bax ratio, and reduced protein expression of cyt-c and caspase-3 activation. In addition, exendin-4 restored mesangial cell energy metabolism by increasing succinate dehydrogenase and phosphofructokinase activities and glucose consumption while inhibiting pyruvate dehydrogenase E1 activity. In conclusion, GLP-1 agonists improve renal injury in diabetic rats by ameliorating metabolic disorders. This mechanism could be partially related to mitochondrial functions and energy metabolism.
Collapse
Affiliation(s)
- Linxi Wang
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Zhou Chen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350001, China;
| | - Xiaoying Liu
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Lijing Wang
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Yu Zhou
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Jingze Huang
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| | - Zhiqing Liu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Z.L.); (D.L.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Z.L.); (D.L.)
| | - Libin Liu
- Department of Endocrinology and Metabolism, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (L.W.); (X.L.); (L.W.); (Y.Z.); (J.H.)
| |
Collapse
|
5
|
Hu X, Liu X, Guo Y, Li Y, Cao Z, Zhang Y, Zhang Y, Chen G, Xu Q. Effects of Chicken Serum Metabolite Treatment on the Blood Glucose Control and Inflammatory Response in Streptozotocin-Induced Type 2 Diabetes Mellitus Rats. Int J Mol Sci 2022; 24:ijms24010523. [PMID: 36613966 PMCID: PMC9820086 DOI: 10.3390/ijms24010523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Chickens can live healthy without adverse effects despite high blood glucose levels. However, the blood biomolecules responsible for maintaining chronic hyperglycemia are unknown. Here, the effects of chicken serum metabolite treatment on blood glucose control and inflammatory response in streptozotocin (STZ)-induced Type 2 Diabetes Mellitus (T2DM) rats were investigated. First, chicken serum treatment reduced the advanced glycation end-products (AGEs) and blood glucose levels in STZ-induced T2DM rats. Second, insulin/glucose-induced acute hypoglycemic/hyperglycemic chickens and the blood biomolecules were screened via nontargeted ultra-performance liquid chromatography with mass spectroscopy (UPLC-MS), identifying 366 key metabolites, including DL-arginine and taurine, as potential markers for chronic hyperglycemia in chickens. Finally, DL-arginine functions for blood glucose control and inflammatory response were evaluated. We found that DL-arginine reduced the levels of blood glucose and AGEs in STZ-induced T2DM rats. In addition, DL-arginine treatment upregulated the glucose transporter type 4 (GLUT4) expression in the muscles and downregulated the advanced glycation end products receptor-1 (AGER1) expression in the liver and nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) expression in the pancreas and thymus tissues. Overall, these results demonstrate that serum metabolite of DL-arginine could maintain blood glucose homeostasis and suppress the inflammatory response in chickens. Therefore, DL-arginine may be a novel target for developing therapeutic agents to regulate hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Xu
- Correspondence: ; Tel.: +86-0514-87997206
| |
Collapse
|
6
|
Huang Y, Lu J, Zhao Q, Chen J, Dong W, Lin M, Zheng H. Potential Therapeutic Mechanism of Traditional Chinese Medicine on Diabetes in Rodents: A Review from an NMR-Based Metabolomics Perspective. Molecules 2022; 27:molecules27165109. [PMID: 36014349 PMCID: PMC9414875 DOI: 10.3390/molecules27165109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat diabetes for a long time, but its application has not been widely accepted due to unstandardized product quality and complex pharmacological mechanisms. The modernization of TCM is crucial for its further development, and in recent years the metabolomics technique has largely driven its modernization. This review focuses on the application of NMR-based metabolomics in diabetic therapy using TCM. We identified a series of metabolic pathways that altered significantly after TCM treatment, providing a better understanding of the metabolic mechanisms of TCM for diabetes care.
Collapse
Affiliation(s)
- Yinli Huang
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou 325400, China
| | - Jiahui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qihui Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Dong
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou 325400, China
| | - Minjie Lin
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou 325400, China
| | - Hong Zheng
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou 325400, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
7
|
Liu Z, Xu Y, Bai X, Guo L, Li X, Gao J, Teng Y, Yu P. Prediction of the mechanisms of action of Zhibai Dihaung Granule in cisplatin-induced acute kidney injury: A network pharmacology study and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115241. [PMID: 35351575 DOI: 10.1016/j.jep.2022.115241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhibai Dihuang Granule (ZDG) is known as traditional Chinese patent medicine with the functions of "Ziyin decrease internal heat" in Traditional Chinses medicine. In clinical, it is also used to treat various kidney diseases. AIM OF THE STUDY We aimed to provide a basis for the curative effect of ZDG on acute kidney injury induced by cisplatin (CIAKI). MATERIALS AND METHODS The active compounds and protein targets of ZDG, as well as the potential targets of the CIAKI were searched from the database. The protein-protein interaction (PPI) network diagram and the drug-compounds-targets-disease network were constructed. Enrichment analysis was performed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the effect of ZDG on the prevention and treatment of CIAKI was experimentally validated in vivo and in vitro. RESULTS From the database, we screened 22 active compounds of ZDG and 226 related targets. We obtained 498 gene targets related to CIAKI, among which 40 genes overlapped with ZDG-related targets. Go enrichment and KEGG analysis got 339 terms and 64 pathways, respectively. Based on the above study, we speculated that ZDG has the potential effect on treatment CIAKI, and the mechanism may be related to cell apoptosis and inflammation. The results in vitro experiments showed that ZDG reduced the cytotoxicity of cisplatin to HK-2 and 293T cells, but did not affect the antitumor effect of cisplatin. Moreover, in vivo experiments further proved that ZDG effectively controlled kidney damage caused by cisplatin in SD rats. The results showed that ZDG could regulate the expression of CASP3, p65 and MAPK pathway related proteins, suggesting that ZDG's prevention of CIAKI may be related to apoptosis and inflammatory response. CONCLUSIONS Our study showed that ZDG could prevent and treat CIAKI by inhibiting cell apoptosis and inflammation, which provided a new efficacy and clinical application for ZDG.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Ye Xu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinming Bai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Lvqian Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinran Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
8
|
WANG XS, HU MX, GUAN QX, MEN LH, LIU ZY. Metabolomics analysis reveals the renal protective effect of Panax ginseng C. A. Mey in type 1 diabetic rats. Chin J Nat Med 2022; 20:378-386. [DOI: 10.1016/s1875-5364(22)60175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 12/22/2022]
|
9
|
Zhibai Dihuang Pill Alleviates Ureaplasma urealyticum-Induced Spermatogenic Failure and Testicular Dysfunction via MAPK Signaling Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7174399. [PMID: 35242210 PMCID: PMC8888053 DOI: 10.1155/2022/7174399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022]
Abstract
The testicles and sperm are extremely susceptible to inflammation and oxidative stress. Although Zhibai Dihuang Pill (ZDP) has been reported to treat various infertilities including male infertility induced by Ureaplasma urealyticum (UU) infection, its mechanism is still poorly understood. This study is aimed at clarifying the underlying mechanism of ZDP to protect against UU-infected male infertility. We found that UU-infected infertile rats exhibited weight loss, reduced food intake, and decreased sperm count and vitality. The administration of ZDP improved the general state and sperm motility of rats. In addition, UU infection led to spermatogenesis disorders, impaired secretory function and blood-testis barrier (BTB) of Sertoli cells, and elevated inflammation and oxidative stress. As expected, ZDP suppressed inflammation and oxidative stress to alleviate spermatogenesis disorders. Our research showed that ZDP could improve spermatogenesis disorders and testicular function primarily through the mitogen-activated protein kinase (MAPK) signaling pathway. ZDP exerts its anti-inflammatory and antioxidant effects via the MAPK signaling pathway, thus playing an important role in ameliorating spermatogenesis failure and testicular dysfunction.
Collapse
|
10
|
Tang G, Li S, Zhang C, Chen H, Wang N, Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm Sin B 2021; 11:2749-2767. [PMID: 34589395 PMCID: PMC8463270 DOI: 10.1016/j.apsb.2020.12.020] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.
Collapse
Key Words
- ACEI, angiotensin-converting enzyme inhibitor
- ADE, adverse event
- AGEs, advanced glycation end-products
- AM, mesangial area
- AMPKα, adenosine monophosphate-activated protein kinase α
- ARB, angiotensin receptor blocker
- AREs, antioxidant response elements
- ATK, protein kinase B
- BAX, BCL-2-associated X protein
- BCL-2, B-cell lymphoma 2
- BCL-XL, B-cell lymphoma-extra large
- BMP-7, bone morphogenetic protein-7
- BUN, blood urea nitrogen
- BW, body weight
- C, control group
- CCR, creatinine clearance rate
- CD2AP, CD2-associated protein
- CHOP, C/EBP homologous protein
- CI, confidence interval
- COL-I/IV, collagen I/IV
- CRP, C-reactive protein
- CTGF, connective tissue growth factor
- Chinese medicine
- D, duration
- DAG, diacylglycerol
- DG, glomerular diameter
- DKD, diabetic kidney disease
- DM, diabetes mellitus
- DN, diabetic nephropathy
- Diabetic kidney disease
- Diabetic nephropathy
- EMT, epithelial-to-mesenchymal transition
- EP, E-prostanoid receptor
- ER, endoplasmic reticulum
- ESRD, end-stage renal disease
- ET-1, endothelin-1
- ETAR, endothelium A receptor
- FBG, fasting blood glucose
- FN, fibronectin
- GCK, glucokinase
- GCLC, glutamate-cysteine ligase catalytic subunit
- GFR, glomerular filtration rate
- GLUT4, glucose transporter type 4
- GPX, glutathione peroxidase
- GRB 10, growth factor receptor-bound protein 10
- GRP78, glucose-regulated protein 78
- GSK-3, glycogen synthase kinase 3
- Gαq, Gq protein alpha subunit
- HDL-C, high density lipoprotein-cholesterol
- HO-1, heme oxygenase-1
- HbA1c, glycosylated hemoglobin
- Herbal medicine
- ICAM-1, intercellular adhesion molecule-1
- IGF-1, insulin-like growth factor 1
- IGF-1R, insulin-like growth factor 1 receptor
- IKK-β, IκB kinase β
- IL-1β/6, interleukin 1β/6
- IR, insulin receptor
- IRE-1α, inositol-requiring enzyme-1α
- IRS, insulin receptor substrate
- IκB-α, inhibitory protein α
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- LC3, microtubule-associated protein light chain 3
- LDL, low-density lipoprotein
- LDL-C, low density lipoprotein-cholesterol
- LOX1, lectin-like oxidized LDL receptor 1
- MAPK, mitogen-activated protein kinase
- MCP-1, monocyte chemotactic protein-1
- MD, mean difference
- MDA, malondialdehyde
- MMP-2, matrix metallopeptidase 2
- MYD88, myeloid differentiation primary response 88
- Molecular target
- N/A, not applicable
- N/O, not observed
- N/R, not reported
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOX-4, nicotinamide adenine dinucleotide phosphate-oxidase-4
- NQO1, NAD(P)H:quinone oxidoreductase 1
- NRF2, nuclear factor erythroid 2-related factor 2
- OCP, oxidative carbonyl protein
- ORP150, 150-kDa oxygen-regulated protein
- P70S6K, 70-kDa ribosomal protein S6 kinase
- PAI-1, plasminogen activator inhibitor-1
- PARP, poly(ADP-Ribose) polymerase
- PBG, postprandial blood glucose
- PERK, protein kinase RNA-like eukaryotic initiation factor 2A kinase
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1α
- PGE2, prostaglandin E2
- PI3K, phosphatidylinositol 3 kinases
- PINK1, PTEN-induced putative kinase 1
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog
- RAGE, receptors of AGE
- RASI, renin-angiotensin system inhibitor
- RCT, randomized clinical trial
- ROS, reactive oxygen species
- SCr, serum creatinine
- SD, standard deviation
- SD-rat, Sprague–Dawley rat
- SIRT1, sirtuin 1
- SMAD, small mothers against decapentaplegic
- SMD, standard mean difference
- SMURF-2, SMAD ubiquitination regulatory factor 2
- SOCS, suppressor of cytokine signaling proteins
- SOD, superoxide dismutase
- STAT, signal transducers and activators of transcription
- STZ, streptozotocin
- Signaling pathway
- T, treatment group
- TBARS, thiobarbituric acid-reactive substance
- TC, total cholesterol
- TCM, traditional Chinese medicine
- TFEB, transcription factor EB
- TG, triglyceride
- TGBM, thickness of glomerular basement membrane
- TGF-β, tumor growth factor β
- TGFβR-I/II, TGF-β receptor I/II
- TII, tubulointerstitial injury index
- TLR-2/4, toll-like receptor 2/4
- TNF-α, tumor necrosis factor α
- TRAF5, tumor-necrosis factor receptor-associated factor 5
- UACR, urinary albumin to creatinine ratio
- UAER, urinary albumin excretion rate
- UMA, urinary microalbumin
- UP, urinary protein
- VCAM-1, vascular cell adhesion molecule-1
- VEGF, vascular endothelial growth factor
- WMD, weight mean difference
- XBP-1, spliced X box-binding protein 1
- cAMP, cyclic adenosine monophosphate
- eGFR, estimated GFR
- eIF2α, eukaryotic initiation factor 2α
- mTOR, mammalian target of rapamycin
- p-IRS1, phospho-IRS1
- p62, sequestosome 1 protein
- α-SMA, α smooth muscle actin
Collapse
Affiliation(s)
- Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Roointan A, Gheisari Y, Hudkins KL, Gholaminejad A. Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies. Nutr Metab Cardiovasc Dis 2021; 31:2253-2272. [PMID: 34059383 DOI: 10.1016/j.numecd.2021.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
AIM Diabetic nephropathy (DN) is one of the worst complications of diabetes. Despite a growing number of DN metabolite profiling studies, most studies are suffering from inconsistency in their findings. The main goal of this meta-analysis was to reach to a consensus panel of significantly dysregulated metabolites as potential biomarkers in DN. DATA SYNTHESIS To identify the significant dysregulated metabolites, meta-analysis was performed by "vote-counting rank" and "robust rank aggregation" strategies. Bioinformatics analyses were performed to identify the most affected genes and pathways. Among 44 selected studies consisting of 98 metabolite profiles, 17 metabolites (9 up-regulated and 8 down-regulated metabolites), were identified as significant ones by both the meta-analysis strategies (p-value<0.05 and OR>2 or <0.5) and selected as DN metabolite meta-signature. Furthermore, enrichment analyses confirmed the involvement of various effective biological pathways in DN pathogenesis, such as urea cycle, TCA cycle, glycolysis, and amino acid metabolisms. Finally, by performing a meta-analysis over existing time-course studies in DN, the results indicated that lactic acid, hippuric acid, allantoin (in urine), and glutamine (in blood), are the topmost non-invasive early diagnostic biomarkers. CONCLUSION The identified metabolites are potentially involved in diabetic nephropathy pathogenesis and could be considered as biomarkers or drug targets in the disease. PROSPERO REGISTRATION NUMBER CRD42020197697.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kelly L Hudkins
- Department of Pathology, University of Washington, School of Medicine, Seattle, United States
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Li Y, Chen D, Xu C, Zhao Q, Ma Y, Zhao S, Chen C. Glycolipid metabolism and liver transcriptomic analysis of the therapeutic effects of pressed degreased walnut meal extracts on type 2 diabetes mellitus rats. Food Funct 2021; 11:5538-5552. [PMID: 32515761 DOI: 10.1039/d0fo00670j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Walnut meal (WM) is rich in polyphenols which exhibit multiple therapeutic effects. The purpose of this study was to investigate the therapeutic effects of walnut meal extracts (WMP) on glycolipid metabolism and liver transcriptomics in T2DM rats. A T2DM rat model was established by using a high-fat diet combined with streptozotocin. A 5-week WMP therapy showed the effects of decreasing water intake, excretion, fasting blood glucose, fasting insulin, and insulin resistance, increasing β-cell function and insulin sensitivity index; meanwhile regulating dysfunctional lipid metabolism and reducing inflammation; improving body weight, oral glucose tolerance test and insulin sensitivity; and increasing the activities of SOD and CAT while decreasing the MDA levels in the liver and serum of T2DM rats. Moreover, 10 key differentially expressed genes were identified by RNA-seq, including Gck, RT1-Ba, Fasn, Slc13a3, Cd74, Jun, Cyp4a1, Myh7b, Plin3, and Got1, and they were highly potentially related to glycolipid metabolism. Our results suggested that WMP exhibited the anti-diabetic effect and could regulate glycolipid metabolism in T2DM rats. This finding might assist in identifying potential therapeutic targets for T2DM prevention and intervention.
Collapse
Affiliation(s)
- Yulan Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection and Supervision, Kunming 650106, China
| | - Chengmei Xu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | | | - Yage Ma
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Shenglan Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Chaoyin Chen
- Yunnan Academy of Forestry and Grassland, Kunming 650204, China
| |
Collapse
|
13
|
Nephroprotective Role of Zhibai Dihuang Wan in Aristolochic Acid-Intoxicated Zebrafish. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5204348. [PMID: 33344639 PMCID: PMC7725560 DOI: 10.1155/2020/5204348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Zhibai Dihuang Wan (ZDW) is an eight-herbal formula of traditional Chinese medicine. Clinically, it regulated immune activity and was used to treat diabetes and renal disease. In this study, we aimed to explore the nephroprotective effect of ZDW in an aristolochic acid- (AA-) intoxicated zebrafish model. We used a green fluorescent kidney transgenic zebrafish to evaluate the nephroprotective effects of ZDW by recording subtle changes in the kidney. Our results demonstrated that ZDW treatment can attenuate AA-induced kidney malformations (60% for AA-treated, 47% for pretreatment with ZDW, and 17% for cotreatment ZDW with AA, n = 50). Furthermore, we found that the expression levels of tnfα and mpo were decreased either in pretreatment or cotreatment groups. In conclusion, our findings revealed that AA-induced nephrotoxicities can be attenuated by ZDW. Therefore, we believe that zebrafish represent an efficient model for screening AA-protective Chinese medicine.
Collapse
|
14
|
Tian X, Xu Z, Hu P, Yu Y, Li Z, Ma Y, Chen M, Sun Z, Liu F, Li J, Huang C. Determination of the antidiabetic chemical basis of Phellodendri Chinensis Cortex by integrating hepatic disposition in vivo and hepatic gluconeogenese inhibition in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113215. [PMID: 32768636 DOI: 10.1016/j.jep.2020.113215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendri Chinensis Cortex (PCC) has been an herb clinically used to treat diabetes, but the chemical basis of its antidiabetic effects has remained unclear. AIM OF THIS STUDY Based on the efficacy of herbal medicine resulting from the cooperative response of the effective compounds in the target organs with sufficient exposure, the in vivo hepatic disposition and in vitro hepatic gluconeogenesis inhibition were integrated to elucidate the chemical basis for the antidiabetic effect of orally administered PCC from a target organ, liver, perspective. MATERIALS AND METHODS With a developed and validated HPLC-MS/MS method, three alkaloids and five metabolites were determined in the portal vein plasma, liver, and systemic plasma of rats orally administered PCC. The inhibition of hepatic gluconeogenesis by the eight compounds was evaluated in primary hepatocytes. RESULTS The in vivo results showed that magnoflorine was present at the highest concentration among the target constituents in the plasma, where berberine showed a low concentration. In contrast, berberine showed the highest concentration in the liver, and its five metabolites exhibited substantial hepatic accumulation. This discrepancy was strongly associated with the hepatic disposition of the compounds. The hepatic disposition prevented the transfer of 96.1% of the phellodendrine, 71.1% of the berberine and 47.5% of the magnoflorine from the portal vein plasma to the systemic plasma, which corresponded to their hepatic distribution and hepatic metabolism. In vitro, berberine, M1, M4 and M5 significantly and dose-dependently inhibited hepatic glucose production. By integrating the hepatic exposure and inhibitory activity data, we estimated that berberine contributed the most (74%) to the total glucose production inhibition of the orally administered PCC decoction, followed by M4 (14%), M1 (11%) and M5 (1%). CONCLUSION This study was the first to comprehensively describe the pharmacokinetic profiles and hepatic disposition of alkaloids in PCC, and concluded that berberine and its metabolites contributed the most to the total hepatic gluconeogenesis inhibition by orally administered PCC. These results reveal the chemical basis for the antidiabetic effect of orally administered PCC decoction, providing scientific evidence to support the clinical usage of PCC in diabetes treatment.
Collapse
Affiliation(s)
- Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanjie Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Yi WJ, Chen J, Li ZB, Jiang TT, Bi DQ, Liu CM, Yang S, Hu YT, Gan L, Tu HH, Huang H, Li JC. Screening of potential biomarkers for Yin-deficiency-heat syndrome based on UHPLC-MS method and the mechanism of Zhibai Dihuang granule therapeutic effect. Anat Rec (Hoboken) 2020; 303:2095-2108. [PMID: 31909891 DOI: 10.1002/ar.24352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Yin-deficiency-heat (YDH) syndrome is a subhealth state of the individual, mainly manifested as oral ulcers, dry mouth, constipation, and other symptoms. Zhibai Dihuang granule (ZDG), as a classic traditional Chinese medicine, is effective in treating YDH syndrome. We screened the potential biomarkers for diagnosing YDH syndrome, and explored the mechanisms of the therapeutic effect of ZDG. METHODS Plasma samples from the Pinghe (PH, healthy control) group, the Shanghuo (SH, YDH syndrome) group, and the ZDG treated group (therapeutic group) were analyzed by using metabolomics profiling. The data were analyzed by multivariate statistical and bioinformatics analyses. RESULTS We screened four differential metabolites such as, decanoylcarnitine, dodecanoylcarnitine, phosphatidylcholine (PC), and Aspartate (Asp) Arginine (Arg) Proline (Pro) in the SH group and the PH group. The results showed that the combination of above four metabolites could serve as a potential biomarker for the early diagnosis of YDH syndrome. The metabolites decanoylcarnitine and glucose were found to be differentially expressed in the YDH syndrome group and tended to be normalized after ZDG treatment. CONCLUSION The increased levels of four differential metabolites (decanoylcarnitine, dodecanoylcarnitine, PC, and Asp Arg Pro) revealed that individuals with YDH syndrome may have increased energy metabolism in the body, which could lead to disorders of fatty acids β-oxidation and immune function. The levels of two differential metabolites including decanoylcarnitine and glucose returned to normal after ZDG treatment, indicating that ZDG could treat YDH syndrome by regulating glucose metabolism and fatty acids β-oxidation. Our study provides a new method for the diagnosis of YDH syndrome, and may provide theoretical basis for novel therapeutic strategies of YDH syndrome.
Collapse
Affiliation(s)
- Wen-Jing Yi
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Jing Chen
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Bin Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting-Ting Jiang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De-Qing Bi
- Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chang-Ming Liu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Yang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Lin Gan
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Hui Tu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huai Huang
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Ji-Cheng Li
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China.,Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Changes in hepatic metabolic profile during the evolution of STZ-induced diabetic rats via an 1H NMR-based metabonomic investigation. Biosci Rep 2019; 39:BSR20181379. [PMID: 30918104 PMCID: PMC6481239 DOI: 10.1042/bsr20181379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The present study aimed to explore the changes in the hepatic metabolic profile during the evolution of diabetes mellitus (DM) and verify the key metabolic pathways. Methods: Liver samples were collected from diabetic rats induced by streptozotocin (STZ) and rats in the control group at 1, 5, and 9 weeks after STZ administration. Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics was used to examine the metabolic changes during the evolution of DM, and partial least squares-discriminate analysis (PLS-DA) was performed to identify the key metabolites. Results: We identified 40 metabolites in the 1H NMR spectra, and 11 metabolites were further selected by PLS-DA model. The levels of α-glucose and β-glucose, which are two energy-related metabolites, gradually increased over time in the DM rats, and were significantly greater than those of the control rats at the three-time points. The levels of choline, betaine, and methionine decreased in the DM livers, indicating that the protective function in response to liver injury may be undermined by hyperglycemia. The levels of the other amino acids (leucine, alanine, glycine, tyrosine, and phenylalanine) were significantly less than those of the control group during DM development. Conclusions: Our results suggested that the hepatic metabolic pathways of glucose, choline-betaine-methionine, and amino acids were disturbed during the evolution of diabetes, and that choline-betaine-methionine metabolism may play a key role.
Collapse
|
17
|
Tian X, Liu F, Li Z, Lin Y, Liu H, Hu P, Chen M, Sun Z, Xu Z, Zhang Y, Han L, Zhang Y, Pan G, Huang C. Enhanced Anti-diabetic Effect of Berberine Combined With Timosaponin B2 in Goto-Kakizaki Rats, Associated With Increased Variety and Exposure of Effective Substances Through Intestinal Absorption. Front Pharmacol 2019; 10:19. [PMID: 30733676 PMCID: PMC6353801 DOI: 10.3389/fphar.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Objective: Inspired by the traditionally clinical application of herb pair Zhimu-Huangbo to treat diabetes, a combination of plant ingredients, timosaponin B2 (TB-2) and berberine (BBR), was evaluated for their anti-diabetic efficacy and cooperative mechanisms. Methods: The efficacy and pharmacokinetics of orally administered TB-2 (33.3 mg/kg/day), BBR (66.7 mg/kg/day), and TB-2+BBR (100 mg/kg/day) were evaluated in spontaneously non-obese diabetic Goto-Kakizaki (GK) rats, and metformin (200 mg/kg/day) was used as a positive control. The comparative exposure of the parent drugs, timosaponin A3 (TB-2 metabolite), and M1–M5 (BBR metabolites) was quantified in the portal vein plasma (before hepatic disposition), liver, and systemic plasma (after hepatic disposition) of normal rats on single and combination treatments. Cooperative mechanism of TB-2 and BBR on intestinal absorption and hepatic metabolism was investigated in Caco-2 cells and primary hepatocytes, respectively. Results: After a 6-week experiment, non-fasting and fasting blood glucose levels and oral glucose tolerance test results showed that TB-2+BBR treatments (100 mg/kg/day) displayed significantly anti-diabetic efficacy in GK rats, comparable to that on metformin treatments. However, no significant improvement was observed on TB-2 or BBR treatments alone. Compared to single treatments, combination treatments led to the increased circulating levels of BBR by 107% in GK rats. In normal rats, the hepatic exposure of BBR, timosaponin A3, and M1–M5 was several hundred folds higher than their circulating levels. Co-administration also improved the levels in the plasma and liver by 41–114% for BBR, 141–230% for TB-2, and 12–282% for M1–M5. In vitro, the interaction between TB-2 and BBR was mediated by intestinal absorption, rather than hepatic metabolism. Conclusion: Combining TB-2 and BBR enhanced the anti-diabetic efficacy by increasing the in vivo variety of effective substances, including the parent compounds and active metabolites, and improving the levels of those substances through intestinal absorption. This study is a new attempt to assess the effects of combined plant ingredients on diabetes by scientifically utilizing clinical experience of an herb pair.
Collapse
Affiliation(s)
- Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Liu CM, Chen J, Yang S, Mao LG, Jiang TT, Tu HH, Chen ZL, Hu YT, Gan L, Li ZJ, Li JC. The Chinese herbal formula Zhibai Dihuang Granule treat Yin-deficiency-heat syndrome rats by regulating the immune responses. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:271-278. [PMID: 29729385 DOI: 10.1016/j.jep.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhibai Dihuang Granule (ZDG), a traditional Chinese medicine (TCM) made from eight Chinese herbs, has been classically used to treat Yin-deficiency-heat (YDH) syndrome. ZDG is well known with the therapeutic efficacy of nourishing Yin and decreasing internal heat in clinic, but the mechanism of ZDG's therapeutic effect is still not clear. MATERIALS AND METHODS High doses of triiodothyronine (T3) were given intraperitoneally to induce Hyperthyroid YDH syndrome in SD rats. The animals were then treated with ZDG for one week. The iTRAQ-coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique was used to screen the differentially expressed serum proteins between ZDG treated rats and YDH syndrome rats. The differentially expressed proteins were analyzed by bioinformatics method and were verified by enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 55 differentially expressed proteins were identified, including 23 up-regulated proteins (>1.25 fold, p < 0.05) and 32 down-regulated proteins (<0.80 fold, p < 0.05). Among the differentially expressed proteins, 26 proteins returned to normal after ZDG treatment. Bioinformatics analysis showed that these proteins were mainly involved in immune response, including regulation of immune system process, complement activation, and humoral immune response mediated by circulating immunoglobulin. ELISA revealed significantly increased levels of Zinc-alpha-2-glycoprotein (Azgp1), L-selectin, C-reactive protein (Crp), Plasminogen (Plg), Kininogen 1 (Kng1), and significantly decreased levels of Mannose binding lectin 2 (Mbl2) and Complement C1qb chain (C1qb) in ZDG treated rats compared with YDH syndrome rats. Bioinformatics analyses indicated that Azgp1 participated in antigen processing and presentation, Crp, C1qb, and Mbl2 were involved in complement activation, while L-selectin, Plg, and Kng1 were involved in regulating the inflammatory response. CONCLUSIONS Our study provides experimental evidence to understand the therapeutic mechanism of ZDG in YDH syndrome. The results suggested that ZDG may regulate the complement activation and inflammatory response, and promote the ability to recognize antigens to alleviate YDH syndrome.
Collapse
Affiliation(s)
- Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China
| | - Su Yang
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China
| | - Lian-Gen Mao
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China
| | - Ting-Ting Jiang
- South China University of Technology School of Medicine, Guangzhou, PR China
| | - Hui-Hui Tu
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China
| | - Zhong-Liang Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China
| | - Yu-Ting Hu
- South China University of Technology School of Medicine, Guangzhou, PR China
| | - Lin Gan
- South China University of Technology School of Medicine, Guangzhou, PR China
| | - Zhong-Jie Li
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China
| | - Ji-Cheng Li
- Institute of Cell Biology, Zhejiang University, Hangzhou, PR China; South China University of Technology School of Medicine, Guangzhou, PR China.
| |
Collapse
|
19
|
Betaine treatment decreased serum glucose and lipid levels, hepatic and renal oxidative stress in streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2016-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Objective
The present study was aimed to investigate the effects of betaine (BET) on streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. Additionally, the efficiency of BET was compared with metformin (MET), a standard oral antidiabetic drug.
Methods
STZ (55 mg/kg body weight; i.p.) was injected to male Wistar rats. Rats with DM were treated with BET (1 g/kg body weight/day;) or MET (500 mg/kg body weight/day;) for 4 weeks. Blood glycated hemoglobin (HbA1c), serum glucose, lipids, hepatic and renal function tests and urinary protein levels were examined. Reactive oxygen species (ROS) formation, malondialdehyde (MDA), glutathione (GSH) levels, and ferric reducing antioxidant power (FRAP) were also determined in liver and kidney.
Results
Glucose, HbA1c, and serum lipids increased and liver and kidney function tests were impaired in diabetic rats. Hepatic and renal ROS formation and MDA levels were elevated, hepatic, but not renal GSH and FRAP levels were decreased. BET decreased blood HbA1c, serum glucose and lipid levels and urine protein levels. BET diminished hepatic and renal prooxidant status.
Conclusion
Our results indicate that BET may be effective in decreasing STZ-induced high levels of blood HbA1c, and serum glucose and lipid levels and prooxidant status in liver and kidney tissues.
Collapse
|
20
|
Chen J, Zhang C, Wu X, Ji H, Ma W, Wei S, Zhang L, Chen J. 1 H NMR-based nontargeted metabonomics study of plasma and urinary biochemical changes in Kudouzi treated rats. REVISTA BRASILEIRA DE FARMACOGNOSIA 2018. [DOI: 10.1016/j.bjp.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Wang W, Zhao L, He Z, Wu N, Li Q, Qiu X, Zhou L, Wang D. Metabolomics-based evidence of the hypoglycemic effect of Ge-Gen-Jiao-Tai-Wan in type 2 diabetic rats via UHPLC-QTOF/MS analysis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:299-318. [PMID: 29580854 DOI: 10.1016/j.jep.2018.03.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ge-Gen-Jiao-Tai-Wan (GGJTW) formula, derived from traditional Chinese herbal medicine, is composed of Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (Ge-Gen in Chinese), Coptis chinensis Franch (Huang-Lian), and Cinnamomum cassia (L.) J. Presl (Rou-Gui). GGJTW is used for treatment of diabetes in China, reflecting the potent hypoglycemic effect of its ingredients. However, little is known of the hypoglycemic effect of GGJTW and the underlying metabolic mechanism. AIM OF THE STUDY This study aimed to investigate the hypoglycemic effect of GGJTW in type 2 diabetic rats and the metabolic mechanism of action. MATERIALS AND METHODS Ultra high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-QTOF/MS)-based metabolomics approach was used for monitoring hyperglycaemia induced by high-sugar high-fat fodder and streptozotocin (STZ), and the protective effect of GGJTW. Dynamic fasting blood glucose (FBG) levels, body weight, and biochemical parameters, including lipid levels, hepatic-renal function, and hepatic histopathology were used to confirm the hyperglycaemic toxicity and attenuation effects. An orthogonal partial least squared-discriminant analysis (OPLS-DA) approach highlighted significant differences in the metabolome of the healthy control, diabetic, and drug-treated rats. The metabolomics pathway analysis (MetPA) and Kyoto encyclopedia of genes and genomes (KEGG) database were used to investigate the underlying metabolic pathways. RESULTS Metabolic profiling revealed 37 metabolites as the most potential biomarker metabolites distinguishing GGJTW-treated rats from model rats. Most of the metabolites were primarily associated with bile acid metabolism and lipid metabolism. The most critical pathway was primary bile acid biosynthesis pathway involving the up-regulation of the levels of cholic acid (CA), chenodeoxycholic acid (CDCA), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodesoxycholic acid (TCDCA), and taurine. CONCLUSIONS The significantly-altered metabolite levels indicated the hypoglycemic effect of GGJTW on diabetic rats and the underlying metabolic mechanism. This study will be meaningful for the clinical application of GGJTW and valuable for further exploration of the mechanism.
Collapse
Affiliation(s)
- Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Linlin Zhao
- Physical Examination Center, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China.
| | - Zhenyu He
- Institute of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208 Hunan, China.
| | - Ning Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Qiuxia Li
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Xinjian Qiu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Lu Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| |
Collapse
|
22
|
Wang L, Liu Z, Chen Z, Huang C, Liu X, Chen C, Liu X, Huang J, Liu L, Lin D. Metabonomic analysis of the therapeutic effect of exendin-4 for the treatment of tBHP-induced injury in mouse glomerulus mesangial cells. Free Radic Res 2018. [PMID: 29526117 DOI: 10.1080/10715762.2018.1449948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Although previous studies have reported the protective effect of glucagon-like peptide-1 (GLP-1) in diabetes nephropathy, the molecular mechanism such as nephroprotection remains elusive. In this study, we explored the molecular mechanism of exendin-4 as an GLP-1 receptor agonist for the treatment of tert-butyl hydroperoxide (t-BHP)-induced injury in mouse glomerulus mesangial cells (SV40 MES 13 cells) via an NMR-based metabonomic analysis. We found that exendin-4 protected mesangial cells from t-BHP-mediated toxicity, decreased the percentage of t-BHP-treated cells undergoing apoptosis, and restored glucose consumption in the t-BHP-treated group. A supervised partial least-squares discriminant analysis (PLS-DA) revealed that the metabolic profiles could be distinguished between the control, t-BHP-treated, and exendin-4-pretreated groups. Our findings indicate that exendin-4 pretreatment can cause distinct changes in energy, glycerol phospholipid, and amino acid metabolism. Our study provides novel insight into the metabolic mechanism of exendin-4-mediated nephroprotective effects.
Collapse
Affiliation(s)
- Linxi Wang
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Zhiqing Liu
- b Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , China
| | - Zhou Chen
- c Department of Pharmacology, College of Pharmacy , Fujian Medical University , Fuzhou , China
| | - Caihua Huang
- d Exercise and Health Laboratory , Xiamen University of Technology , Xiamen , China
| | - Xiaohong Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Can Chen
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoyin Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Jingze Huang
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Libin Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Donghai Lin
- b Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , China
| |
Collapse
|
23
|
Wu T, Qiao S, Shi C, Wang S, Ji G. Metabolomics window into diabetic complications. J Diabetes Investig 2018; 9:244-255. [PMID: 28779528 PMCID: PMC5835462 DOI: 10.1111/jdi.12723] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetes has become a major global health problem. The elucidation of characteristic metabolic alterations during the diabetic progression is critical for better understanding its pathogenesis, and identifying potential biomarkers and drug targets. Metabolomics is a promising tool to reveal the metabolic changes and the underlying mechanism involved in the pathogenesis of diabetic complications. The present review provides an update on the application of metabolomics in diabetic complications, including diabetic coronary artery disease, diabetic nephropathy, diabetic retinopathy and diabetic neuropathy, and this review provides notes on the prevention and prediction of diabetic complications.
Collapse
Affiliation(s)
- Tao Wu
- Center of Chinese Medical Therapy and Systems BiologyShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Digestive DiseaseLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuxuan Qiao
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chenze Shi
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuya Wang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseaseLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
24
|
Gao K, Yang R, Zhang J, Wang Z, Jia C, Zhang F, Li S, Wang J, Murtaza G, Xie H, Zhao H, Wang W, Chen J. Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology. Pharmacol Res 2018; 130:93-109. [PMID: 29391233 DOI: 10.1016/j.phrs.2018.01.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/22/2022]
Abstract
Qijian mixture, a new traditional Chinese medicine (TCM) formula comprising of Astragalus membranaceus, Ramulus euonymi, Coptis chinensis and Pueraria lobata, was designed to ameliorate the type 2 diabetes (T2D), and its safety and efficacy were evaluated in the research by metabonomics, gut microbiota and system pharmacology. To study the hypoglycemic effect of Qijian mixture, male KKay mice (28-30 g, 8-9 week) and C57/BL6 mice (18-19 g, 8-9 week) were used. Thirty KKay diabetic mice were randomly distributed into 5 groups, abbreviated as Model group (Model), Low Qijian Mixture group (QJM(L)), High Qijian Mixture group (QJM(H)), Chinese Medicine (Gegen Qinlian Decoction) Positive group (GGQL), and Western Medicine (Metformin hydrochloride) Positive group (Metformin). C57/BL6 was considered as the healthy control group (Control). Moreover, a system pharmacology approach was utilized to assess the physiological targets involved in the action of Qijian mixture. There was no adverse drug reaction of Qijian mixture in the acute toxicity study and HE result, and, compared with Model group, Qijian mixture could modulate blood glycemic level safely and effectively. Qijian Mixture was lesser effective than metformin hydrochloride; however, both showed similar hypoglycemic trend. Based on 1H NMR based metabonomics study, the profoundly altered metabolites in Qijian mixture treatment group were identified. Qijian mixture-related 55 proteins and 4 signaling pathways, including galactose metabolism, valine, leucine and isoleucine degradation metabolism, aminoacyl-tRNA biosynthesis metabolism and alanine, aspartate and glutamate metabolism pathways, were explored. The PCoA analysis of gut microbiota revealed that Qijian mixture treatment profoundly enriched bacteroidetes. In addition, the system pharmacology paradigm revealed that Qijian mixture acted through TP53, AKT1 and PPARA proteins. It was concluded that Qijian mixture effectively alleviated T2D, and this effect was linked with the altered features of the metabolite profiles and the gut microbiota.
Collapse
Affiliation(s)
- Kuo Gao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Ran Yang
- China Academy of Chinese Medical Sciences, Guanganmen Hospital, Beijing 100053, China.
| | - Jian Zhang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zhiyong Wang
- FengNing Chinese Medicine Hospital, Xin Feng North Road, FengNing, 068350, China.
| | - Caixia Jia
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Feilong Zhang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinping Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Ghulam Murtaza
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China; Institute of Automation, Chinese Academy of Sciences, Beijing 100029, China.
| | - Hua Xie
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Wei Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| |
Collapse
|
25
|
Xu W, Pei Y, Xu S, Wang H, Jin P. Metabolic Profiling Analysis of the Alleviation Effect of the Fractions of Niuhuang Jiedu Tablet on Realgar Induced Toxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:2154603. [PMID: 29599804 PMCID: PMC5828372 DOI: 10.1155/2018/2154603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Niuhuang Jiedu Tablet (NJT) is a classical formula in treating acute tonsillitis, pharyngitis, and so on. In the formula, significant level of Realgar as a potentially toxic element is contained. Our previous experiments revealed that it was less toxic for combined Realgar in NJT. However, the active fraction of this prescription with toxicity alleviation effect on Realgar was still obscure. NJT was divided into five different polar fractions (NJT-PET, NJT-25, NJT-50, NJT-75, and NJT-95), and we explored the toxicity alleviation effect on Realgar. Based on 1H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. With pattern recognition analysis of metabolites in urine and serum, Realgar group showed a clear separation from control group, while the metabolic profiles of NJT-PET, NJT-25, NJT-50, and NJT-95 groups were similar to Realgar group, and the metabolic profiles of NJT and NJT-75 groups were very close to control group. Statistics results were confirmed by the histopathological examination and biochemical assay. The present work indicated that 75% EtOH fraction of NJT was the most valid fraction with the toxicity alleviation effect on Realgar.
Collapse
Affiliation(s)
- Wenfeng Xu
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Xu
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pengfei Jin
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| |
Collapse
|
26
|
Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine. Chem Biol Interact 2017; 273:133-141. [PMID: 28619388 DOI: 10.1016/j.cbi.2017.06.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/13/2017] [Accepted: 06/12/2017] [Indexed: 01/08/2023]
|
27
|
Wang HP, Liu Y, Chen C, Xiao HB. Screening Specific Biomarkers of Herbs Using a Metabolomics Approach: A Case Study of Panax ginseng. Sci Rep 2017; 7:4609. [PMID: 28676690 PMCID: PMC5496890 DOI: 10.1038/s41598-017-04712-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/18/2017] [Indexed: 12/27/2022] Open
Abstract
Medicinal herbs belonging to the same genus are always easily confused due to their extremely similar morphology and metabolites. Previously, to differentiate them, inherently specific biomarkers were screened out via intuitive comparison of their metabolite profiles. Unfortunately, the selected biomarkers have worked only partially. Most significant specific biomarkers have been neglected. Herein, a novel method for screening specific biomarkers of medicinal herbs using a metabolomics technique was developed. Firstly, the profiles of a group of easily confused herbs belonging to the same genus were analyzed by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry to detect all components, including low-response metabolites. Then, all components were compared between the different samples, and specific biomarkers were extracted by the metabolomics techniques of alignment, normalization, defining the sample sets, filtering by frequency and Venn diagram analysis with Mass Profiler Professional (MPP) software. Thirdly, the correlations of these biomarkers were investigated via partial correlational analysis to obtain the most representative specific biomarkers. As an example, selection of specific biomarkers for ginseng (Panax ginseng) was performed, and three specific biomarkers including chikusetsusaponin IVa, ginsenoside Rf and ginsenoside Rc were finally selected and verified as the most representative specific biomarkers of Panax ginseng.
Collapse
Affiliation(s)
| | - Yan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Bin Xiao
- Beijing University of Chinese Medicine, Beijing, China. .,Shihezi University, Shihezi, China.
| |
Collapse
|
28
|
Mu F, Duan J, Bian H, Yin Y, Zhu Y, Wei G, Guan Y, Wang Y, Guo C, Wen A, Yang Y, Xi M. Cardioprotective effects and mechanism of Radix Salviae miltiorrhizae and Lignum Dalbergiae odoriferae on rat myocardial ischemia/reperfusion injury. Mol Med Rep 2017; 16:1759-1770. [PMID: 28656200 PMCID: PMC5562082 DOI: 10.3892/mmr.2017.6821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/25/2017] [Indexed: 01/03/2023] Open
Abstract
Radix Salviae miltiorrhizae (SM) and Lignum Dalbergiae odoriferae (DO) are traditional Chinese medicinal herbs used to treat ischemic heart disease and other cardiovascular diseases; however, to the best of our knowledge, there are currently few studies regarding their effects. The present study aimed to investigate the cardioprotective effects of SM and DO during myocardial ischemia/reperfusion (MI/R) injury in rats, and explore the molecular mechanisms that underlie their actions. In the present study, Sprague-Dawley rats were pretreated with SM, the aqueous extract of DO (DOA) and the volatile oil of DO (DOO), either as a monotherapy or in combination for 7 days. Subsequently, the rats were subjected to 30 min of ischemia followed by 180 min of reperfusion. Traditional pharmacodynamic evaluation and metabonomics based on gas chromatography/time-of-flight mass spectrometry were used to identify the therapeutic effects of these traditional Chinese medicines. The results revealed that SM, DOA and DOO monotherapies ameliorated cardiac function, and this effect was strengthened further when used in combined therapies. Among the combined treatments, SM + DOO exhibited the greatest potential (P<0.05) to improve electrocardiogram results and heart rate, reduce the heart weight index and myocardial infarct size, and decrease the levels of creatine kinase-MB and lactate dehydrogenase. In addition, metabonomics-based findings, including the principal component analysis and partial least squares discriminant analysis score plot of the metabolic state in rat serum, provided confirmation for the aforementioned results, verifying that SM + DOO exerted synergistic therapeutic efficacies to exhibit a greater effect on rats with MI/R injury when compared with the other pretreatment groups. Furthermore, the most effective duration of SM + DOO treatment was 30 min and the least effective duration was 180 min. Treatment with SM + DOO also significantly (P<0.01) reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells, tumor necrosis factor-α andinterleukin-6 expression, and malondialdehyde content, and increased the serum and tissue activity of superoxide dismutase. These results indicated that the combined effects of SM + DOO may be more effective compared with the single pretreatments against MI/R injury in rats. This effect may be achieved partly through anti-apoptotic, antioxidant and anti-inflammatory activities. Therefore, SM + DOO may be considered an effective and promising novel strategy for the prophylaxis and treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haixu Bian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
29
|
Mu F, Duan J, Bian H, Zhai X, Shang P, Lin R, Zhao M, Hu D, Yin Y, Wen A, Xi M. Metabonomic Strategy for the Evaluation of Chinese Medicine Salvia miltiorrhiza and Dalbergia odorifera Interfering with Myocardial Ischemia/Reperfusion Injury in Rats. Rejuvenation Res 2017; 20:263-277. [PMID: 28093038 DOI: 10.1089/rej.2016.1884] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extract of Salvia miltiorrhiza and Dalbergia Odorifera (SM-DOO) has been traditionally used for the prevention and treatment of cardiovascular diseases. However, information regarding the pharmacodyamic material basis and potential mechanism remain unknown. Male Sprague-Dawley rats were divided into four groups: Sham, Model, Diltiazem, and SM-DOO group, n = 6. Rats were pretreated with homologous drugs for 7 days, and then subjected to 30 minutes of ischemia followed by 180 minutes of reperfusion. Cardioprotection effects of SM-DOO on myocardial ischemia/reperfusion (MI/R) injury rats were examined by hemodynamics, infarct area, histopathology, biochemical indicators, and Western blot analysis. Metabonomics technology was further performed to evaluate the endogenous metabolites profiling systematically. According to the results of pattern recognition analysis, a clear separation of MI/R injury in the Model group and Sham group was achieved and SM-DOO pretreatment group was located much closer to the Sham group than the Model group, which was consistent with results of biochemistry and histopathological assay. Moreover, potential biomarkers were identified to elucidate the drug mechanism of SM-DOO, which may be related with pathways of energy metabolism, especially tricarboxylic acid (TCA) cycle (citric acid) and β-oxidation of fatty acids (3-hydroxybutyric, palmitoleic acid, heptadecanoic acid, and arachidonic acid). In addition, the protein expressions of p-AMPK and p-ACC in the SM-DOO group were significantly elevated, while the levels of carnitine palmitoyl-CoA transferase-1 (CPT-1), p-PDK, and p-PDC were dramatically reduced by SM-DOO. In conclusion, SM-DOO pretreatment could ameliorate MI/R injury by intervening with energy metabolism, especially TCA cycle and β-oxidation of fatty acids. This work showed that the metabonomics method combinate with conventional pharmacological methods is a promising tool in the efficacy and mechanism research of traditional Chinese medicines.
Collapse
Affiliation(s)
- Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Haixu Bian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Xiaohu Zhai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Peijin Shang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Dongmei Hu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
30
|
Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats. Molecules 2016; 21:molecules21081026. [PMID: 27517894 PMCID: PMC6273188 DOI: 10.3390/molecules21081026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese–diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.
Collapse
|
31
|
Liu X, Gao J, Chen J, Wang Z, Shi Q, Man H, Guo S, Wang Y, Li Z, Wang W. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach. Sci Rep 2016; 6:30785. [PMID: 27470195 PMCID: PMC4965763 DOI: 10.1038/srep30785] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetic coronary heart disease (T2DM-CHD) is a kind of serious and complex disease. Great attention has been paid to exploring its mechanism; however, the detailed understanding of T2DM-CHD is still limited. Plasma samples from 15 healthy controls, 13 coronary heart disease (CHD) patients, 15 type 2 diabetes mellitus (T2DM) patients and 28 T2DM-CHD patients were analyzed in this research. The potential biomarkers of CHD and T2DM were detected and screened out by (1)H NMR-based plasma metabolic profiling and multivariate data analysis. About 11 and 12 representative metabolites of CHD and T2DM were identified respectively, mainly including alanine, arginine, proline, glutamine, creatinine and acetate. Then the diagnostic model was further constructed based on the previous metabolites of CHD and T2DM to detect T2DM-CHD with satisfying sensitivity of 92.9%, specificity of 93.3% and accuracy of 93.2%, validating the robustness of (1)H NMR-based plasma metabolic profiling to diagnostic strategy. The results demonstrated that the NMR-based metabolomics approach processed good performance to identify diagnostic plasma biomarkers and most identified metabolites related to T2DM and CHD could be considered as predictors of T2DM-CHD as well as the therapeutic targets for prevention, which provided new insight into diagnosing and forecasting of complex diseases.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jian Gao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiyong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shi
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongxue Man
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shuzhen Guo
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.,Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
32
|
Qishen Yiqi Drop Pill improves cardiac function after myocardial ischemia. Sci Rep 2016; 6:24383. [PMID: 27075394 PMCID: PMC4830957 DOI: 10.1038/srep24383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Myocardial ischemia (MI) is one of the leading causes of death, while Qishen Yiqi Drop Pill (QYDP) is a representative traditional Chinese medicine to treat this disease. Unveiling the pharmacological mechanism of QYDP will provide a great opportunity to promote the development of novel drugs to treat MI. 64 male Sprague-Dawley (SD) rats were divided into four groups: MI model group, sham operation group, QYDP treatment group and Fosinopril treatment group. Echocardiography results showed that QYDP exhibited significantly larger LV end-diastolic dimension (LVEDd) and LV end-systolic dimension (LVEDs), compared with the MI model group, indicating the improved cardiac function by QYDP. (1)H-NMR based metabonomics further identify 9 significantly changed metabolites in the QYDP treatment group, and the QYDP-related proteins based on the protein-metabolite interaction networks and the corresponding pathways were explored, involving the pyruvate metabolism pathway, the retinol metabolism pathway, the tyrosine metabolism pathway and the purine metabolism pathway, suggesting that QYDP was closely associated with blood circulation. ELISA tests were further employed to identify NO synthase (iNOS) and cathepsin K (CTSK) in the networks. For the first time, our work combined experimental and computational methods to study the mechanism of the formula of traditional Chinese medicine.
Collapse
|
33
|
Abas F, Khatib A, Perumal V, Suppaiah V, Ismail A, Hamid M, Shaari K, Lajis NH. Metabolic alteration in obese diabetes rats upon treatment with Centella asiatica extract. JOURNAL OF ETHNOPHARMACOLOGY 2016; 180:60-69. [PMID: 26775274 DOI: 10.1016/j.jep.2016.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Pegaga' is a traditional Malay remedy for a wide range of complaints. Among the 'pegaga', Centella asiatica has been used as a remedy for diabetes mellitus. Thus, we decided to validate this claim by evaluating the in vivo antidiabetic property of C. asiatica (CA) on T2DM rat model using the holistic (1)H NMR-based metabolomics approach. METHOD In this study, an obese diabetic (mimic of T2DM condition) animal model was developed using Sprague-Dawley rats fed with a high-fat diet and induced into diabetic condition by the treatment of a low dose of streptozotocin (STZ). The effect of C. asiatica extract on the experimental animals was followed based on the changes observed in the urinary and serum metabolites, measured by (1)H NMR of urine and blood samples collected over the test period. RESULTS A long-term treatment of obese diabetic rats with CA extract could reverse the glucose and lipid levels, as well as the tricarboxylic acid cycle and amino acid metabolic disorders, back towards normal states. Biochemical analysis also showed an increase of insulin production in diabetic rats upon treatment of CA extract. CONCLUSION This study has provided evidence that clearly supported the traditional use of CA as a remedy for diabetes. NMR-based metabolomics was successfully applied to show that CA produced both anti-hyperglycemic and anti-hyperlipidemic effects on a rat model. In addition to increasing the insulin secretion, the CA extract also ameliorates the metabolic pathways affected in the induced diabetic rats. This study further revealed the potential usage of CA extract in managing diabetes mellitus and the results of this work may contribute towards the further understanding of the underlying molecular mechanism of this herbal remedy.
Collapse
Affiliation(s)
- F Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - A Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - V Perumal
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - V Suppaiah
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - A Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - M Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - K Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - N H Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Al-Moalim BinLaden Chair for Scientific Miracles of Prophetic Medicine, Scientific Chairs Unit, Taibah University, P.O. Box 30001, Madinah al Munawarah 41311, Saudi Arabia.
| |
Collapse
|
34
|
Sun GD, Li CY, Cui WP, Guo QY, Dong CQ, Zou HB, Liu SJ, Dong WP, Miao LN. Review of Herbal Traditional Chinese Medicine for the Treatment of Diabetic Nephropathy. J Diabetes Res 2016; 2016:5749857. [PMID: 26649322 PMCID: PMC4662991 DOI: 10.1155/2016/5749857] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is the most serious chronic complications of diabetes; 20-40% of diabetic patients develop into end stage renal disease (ESRD). However, exact pathogenesis of DN is not fully clear and we have great difficulties in curing DN; poor treatment of DN led to high chances of mortality worldwide. A lot of western medicines such as ACEI and ARB have been demonstrated to protect renal function of DN but are not enough to delay or retard the progression of DN; therefore, exploring exact and feasible drug is current research hotspot in medicine. Traditional Chinese medicine (TCM) has been widely used to treat and control diabetes and its complications such as DN in a lot of scientific researches, which will give insights into the mechanism of DN, but they are not enough to reveal all the details. In this paper, we summarize the applications of herbal TCM preparations, single herbal TCM, and/or monomers from herbal TCM in the treatment of DN in the recent 10 years, depicting the renal protective effects and the corresponding mechanism, through which we shed light on the renal protective roles of TCM in DN with a particular focus on the molecular basis of the effect and provide a beneficial supplement to the drug therapy for DN.
Collapse
Affiliation(s)
- Guang-dong Sun
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Guang-dong Sun: and
| | - Chao-yuan Li
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-peng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Qiao-yan Guo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Chang-qing Dong
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Hong-bin Zou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Shu-jun Liu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-peng Dong
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Li-ning Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Li-ning Miao:
| |
Collapse
|
35
|
Wang P, Wang Q, Yang B, Zhao S, Kuang H. The Progress of Metabolomics Study in Traditional Chinese Medicine Research. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1281-310. [DOI: 10.1142/s0192415x15500731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traditional Chinese medicine (TCM) has played important roles in health protection and disease treatment for thousands of years in China and has gained the gradual acceptance of the international community. However, many intricate issues, which cannot be explained by traditional methods, still remain, thus, new ideas and technologies are needed. As an emerging system biology technology, the holistic view adopted by metabolomics is similar to that of TCM, which allows us to investigate TCM with complicated conditions and multiple factors in depth. In this paper, we tried to give a timely and comprehensive update about the methodology progression of metabolomics, as well as its applications, in different fields of TCM studies including quality control, processing, safety and efficacy evaluation. The herbs investigated by metabolomics were selected for detailed examination, including Anemarrhena asphodeloides Bunge, Atractylodes macrocephala Kidd, Pinellia ternate, etc.; furthermore, some valuable results have been obtained and summarized. In conclusion, although the study of metabolomics is at the early phase and requires further scrutiny and validation, it still provides bright prospects to dissect the synergistic action of multiple components from TCM. Overall, with the further development of analytical techniques, especially multi-analysis techniques, we expect that metabolomics will greatly promote TCM research and the establishment of international standards, which is beneficial to TCM modernization.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Shan Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
36
|
Shi J, Cao B, Wang XW, Aa JY, Duan JA, Zhu XX, Wang GJ, Liu CX. Metabolomics and its application to the evaluation of the efficacy and toxicity of traditional Chinese herb medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:204-216. [PMID: 26657802 DOI: 10.1016/j.jchromb.2015.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
Traditional Chinese herb medicines (TCHMs) have been used in the treatment of a variety of diseases for thousands of years in Asian countries. The active components of TCHMs usually exert combined synergistic therapeutic effects on multiple targets, but with less potential therapeutic effect based on routine indices than Western drugs. These complex effects make the assessment of the efficacy of TCHMs and the clarification of their underlying mechanisms very challenging, and therefore hinder their wider application and acceptance. Metabolomics is a crucial part of systems biology. It allows the quantitative measurement of large numbers of the low-molecular endogenous metabolites involved in metabolic pathways, and thus reflects the fundamental metabolism status of the body. Recently, dozens of metabolomic studies have been devoted to prove the efficacy/safety, explore the underlying mechanisms, and identify the potential biomarkers to access the action targets of TCHMs, with fruitful results. This article presents an overview of these studies, focusing on the progress made in exploring the pharmacology and toxicology of various herbal medicines.
Collapse
Affiliation(s)
- Jian Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Bei Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xin-Wen Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Ji-Ye Aa
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jin-Ao Duan
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Xuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Chang-Xiao Liu
- Research Center of New Drug Evaluation, The National Laboratory of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
37
|
Zhang L, Li M, Zhan L, Lu X, Liang L, Su B, Sui H, Gao Z, Li Y, Liu Y, Wu B, Liu Q. Plasma metabolomic profiling of patients with diabetes-associated cognitive decline. PLoS One 2015; 10:e0126952. [PMID: 25974350 PMCID: PMC4431856 DOI: 10.1371/journal.pone.0126952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/09/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes related cognitive dysfunction (DACD), one of the chronic complications of diabetes, seriously affect the quality of life in patients and increase family burden. Although the initial stage of DACD can lead to metabolic alterations or potential pathological changes, DACD is difficult to diagnose accurately. Moreover, the details of the molecular mechanism of DACD remain somewhat elusive. To understand the pathophysiological changes that underpin the development and progression of DACD, we carried out a global analysis of metabolic alterations in response to DACD. The metabolic alterations associated with DACD were first investigated in humans, using plasma metabonomics based on high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. The related pathway of each metabolite of interest was searched in database online. The network diagrams were established KEGGSOAP software package. Receiver operating characteristic (ROC) analysis was used to evaluate diagnostic accuracy of metabolites. This is the first report of reliable biomarkers of DACD, which were identified using an integrated strategy. The identified biomarkers give new insights into the pathophysiological changes and molecular mechanisms of DACD. The disorders of sphingolipids metabolism, bile acids metabolism, and uric acid metabolism pathway were found in T2DM and DACD. On the other hand, differentially expressed plasma metabolites offer unique metabolic signatures for T2DM and DACD patients. These are potential biomarkers for disease monitoring and personalized medication complementary to the existing clinical modalities.
Collapse
Affiliation(s)
- Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Li
- Academy of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Libin Zhan
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Academy of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| | - Lina Liang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Benli Su
- Department of endocrinology, the Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Hua Sui
- Academy of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Zhengnan Gao
- Department of endocrinology, Dalian Municipal Central Hospital Affillated of Dalian Medical University, Dalian, Liaoning, China
| | - Yuzhong Li
- Examination Department, the Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Liu
- Medical Examination Center, the Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Benhui Wu
- Medical Examination Center, the Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Qigui Liu
- Public Health, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
38
|
Serum metabonomic analysis of protective effects of Curcuma aromatica oil on renal fibrosis rats. PLoS One 2014; 9:e108678. [PMID: 25265289 PMCID: PMC4181651 DOI: 10.1371/journal.pone.0108678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/24/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Curcuma aromatica oil is a traditional herbal medicine demonstrating protective and anti-fibrosis activities in renal fibrosis patients. However, study of its mechanism of action is challenged by its multiple components and multiple targets that its active agent acts on. METHODOLOGY/PRINCIPAL FINDINGS Nuclear magnetic resonance (NMR)-based metabonomics combined with clinical chemistry and histopathology examination were performed to evaluate intervening effects of Curcuma aromatica oil on renal interstitial fibrosis rats induced by unilateral ureteral obstruction. The metabolite levels were compared based on integral values of serum 1H NMR spectra from rats on 3, 7, 14, and 28 days after the medicine administration. Time trajectory analysis demonstrated that metabolic profiles of the agent-treated rats were restored to control levels after 7 days of dosage. The results confirmed that the agent would be an effective anti-fibrosis medicine in a time-dependent manner, especially in early renal fibrosis stage. Targeted metabolite analysis showed that the medicine could lower levels of lipid, acetoacetate, glucose, phosphorylcholine/choline, trimethylamine oxide and raise levels of pyruvate, glycine in the serum of the rats. Serum clinical chemistry and kidney histopathology examination dovetailed well with the metabonomics data. CONCLUSIONS/SIGNIFICANCES The results substantiated that Curcuma aromatica oil administration can ameliorate renal fibrosis symptoms by inhibiting some metabolic pathways, including lipids metabolism, glycolysis and methylamine metabolism, which are dominating targets of the agent working in vivo. This study further strengthens the novel analytical approach for evaluating the effect of traditional herbal medicine and elucidating its molecular mechanism.
Collapse
|
39
|
Metabonomic study of biochemical changes in urinary of type 2 diabetes mellitus patients after the treatment of sulfonylurea antidiabetic drugs based on ultra-performance liquid chromatography/mass spectrometry. Biomed Chromatogr 2014; 29:115-22. [DOI: 10.1002/bmc.3247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 01/09/2023]
|
40
|
Xu W, Wang H, Chen G, Li W, Xiang R, Zhang X, Pei Y. A metabolic profiling analysis of the acute toxicological effects of the realgar (As₂S₂) combined with other herbs in Niuhuang Jiedu Tablet using ¹H NMR spectroscopy. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:771-781. [PMID: 24685585 DOI: 10.1016/j.jep.2014.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Niuhuang Jiedu Tablet (NJT), composed of Realgar (As₂S₂), Bovis Calculus Artificialis, Borneolum Synthcticum, Gypsum Fibrosum, Rhei Radix et Rhizoma (RR), Scutellariae Radix (SR), Platycodonis Radix (PR) and Glycyrrhizae Radix et Rhizoma (GR), is an effective formula of traditional Chinese medicine (TCM) used in treating acute tonsillitis, pharyngitis, periodontitis and mouth ulcer. In the formula, significant level of realgar (As₂S₂) as a potentially toxic element is contained. In our pervious experiments, NJT was significantly less toxic than realgar (As₂S₂), and the material bases of toxicity alleviation effect to realgar (As₂S₂) were RR, SR, PR and GR. However, the toxicity alleviation effect of each above mentioned four herbs to realgar (As₂S₂) and their synergistic detoxification effects to realgar (As₂S₂) were still obscure. MATERIALS AND METHODS Male Wistar rats were divided into 11 groups: control, group R (treated with Realgar), group RRSPG (treated with Realgar, RR, SR, PR and GR), group RRSP (treated with Realgar, RR, SR and PR), group RRSG (treated with Realgar, RR, SR and GR), group RRPG (treated with Realgar, RR, PR and GR), group RSPG (treated with Realgar, SR, PR and GR), group RR (treated with Realgar and RR), group RS (treated with Realgar and SR), group RP (treated with Realgar and PR) and group RG (treated with Realgar and GR). Based on (1)H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. RESULTS The metabolic profiles of groups RR, RS, RP and RG were similar to those of group R, while the metabolic profiles of groups RRSPG, RRSP, RRSG, RRPG and RSPG were almost in line with those of control group. Statistics results were confirmed by the histopathological examination and biochemical assay. CONCLUSION The present work suggested that the toxicity alleviation effects of RR, SR, PR and GR to realgar (As₂S₂) were not obvious when combined with realgar (As₂S₂) respectively, but they had synergistic detoxification effects on realgar (As₂S₂) mutually.
Collapse
Affiliation(s)
- Wenfeng Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Wen Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rongwu Xiang
- Mathematics Teaching & Research Section, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaoli Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China.
| |
Collapse
|
41
|
Hua Y, Xue W, Zhang M, Wei Y, Ji P. Metabonomics study on the hepatoprotective effect of polysaccharides from different preparations of Angelica sinensis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:1090-1099. [PMID: 24378353 DOI: 10.1016/j.jep.2013.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/01/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (AS) has been used for thousands of years in Traditional Chinese Medicine (TCM). Processed products of AS mainly include charred Angelica, parching Angelica with oil, parching Angelica with wine, and parching Angelica with soil, which have been widely used in TCM prescriptions. Polysaccharides are important chemical substances of AS. These compounds effectively treat liver diseases, shows hepatoprotectivity, and contributes directly to the therapeutic effect of AS. However, the precise molecular mechanism of the effects of the different AS products polysaccharide has not been comprehensively explored. The present investigation was designed to assess the effects and possible mechanisms of polysaccharide in the different AS products against carbon tetrachloride-induced liver injury. MATERIALS AND METHODS Liver injury was induced by intraperitoneal injection with Carbon tetrachloride (CCl4) in the mice. Gas chromatography-mass spectrometry (GC-MS) combined with pattern recognition approaches, namely, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), were used to determine differentiating metabolites in plasma and liver tissue. RESULTS PCA and PLS-DA score plots of the liver injury group clustered separately from that of the control, while groups treated with polysaccharides from charred AS (ASTP), parching AS with soil (ASTUP), parching AS with wine (ASJP), parching AS with Sesame Oil (ASYP) clustered closely with the control. This result indicates that the metabolic profiles of the ASTP, ASTUP, ASJP, and ASYP groups are almost similar to those of the control. Potential metabolite biomarkers (six in the liver homogenates and seven in the plasma) were identified. These biomarkers include citric acid, succinic acid,glycine, palmitelaidic acid, arachidonic acid, fumaric acid, malic acid, valine, ananine, and hexadecanoic acid. Functional pathway analysis revealed that alterations in these metabolites are associated with lipid, amino acid, and energy metabolism. Notably, ASTP exhibited a potential pharmacological effect by regulating multiple perturbed pathways to the normal state. CONCLUSION It is likely that ASTP, ASTUP, ASJP, ASYP intervenes the metabolic process of liver injury mice by affecting the lipid and amino acid metabolism. Metabonomics is a robust and promising for the identification of biomarkers and elucidation of the mechanisms of a disease, thereby highlighting its importance in drug discovery.
Collapse
Affiliation(s)
- Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Wenxin Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Man Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China.
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| |
Collapse
|
42
|
Wang H, Sun H, Zhang A, Li Y, Wang L, Shi H, Dizou XL, Wang X. Rapid identification and comparative analysis of the chemical constituents and metabolites ofPhellodendri amurensiscortex and Zhibai dihuang pill by ultra-performance liquid chromatography with quadrupole TOF-MS. J Sep Sci 2013; 36:3874-82. [DOI: 10.1002/jssc.201300794] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/03/2013] [Accepted: 10/10/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Huiyu Wang
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| | - Hui Sun
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| | - Aihua Zhang
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| | - Yuan Li
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| | - Lihong Wang
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| | - Hui Shi
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| | - Xianna Li Dizou
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| | - Xijun Wang
- College of Pharmacy; National TCM Key Laboratory of Serum Pharmacochemistry; Heilongjiang University of Chinese Medicine; Harbin China
| |
Collapse
|
43
|
Chen L, Fan J, Li Y, Shi X, Ju D, Yan Q, Yan X, Han L, Zhu H. Modified Jiu Wei Qiang Huo decoction improves dysfunctional metabolomics in influenza A pneumonia-infected mice. Biomed Chromatogr 2013; 28:468-74. [PMID: 24132661 DOI: 10.1002/bmc.3055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/28/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
Abstract
In order to study the effective mechanism of a traditional Chinese medicine (TCM), modified Jiu Wei Qiang Huo decoction (MJWQH), against H1N1-induced pneumonia in mice, we chose a holistic approach. A reverse-phase liquid chromatography with quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS) was developed to determine metabolomic biomarkers in mouse serum for the MJWQH effects. Thirteen biomarkers of H1N1-induced pneumonia in mice serum were identified, which comprised l-valine, lauroylcarnitine, palmitoyl-l-carnitine, l-ornithine, uric acid, taurine, O-succinyl-l-homoserine, l-leucine, l-phenylalanine, PGF2α, 20-ethyl-PGE2, arachidonic acid, and glycerophospho-N-arachidonoyl ethanolamine. Among them, metabolites of amino acids, fatty acids and arachidonic acid had the most relevant changes in mice with H1N1-induced pneumonia. MJWQH effectively improved weight loss, lung index, biomarkers and inflammatory mediators such as prostaglandin E2 and phospholipase A2 in the infected mice. Importantly, MJWQH reversed the elevated biomarkers to the control levels from the infection, which provided a systematic view and a theoretical basis for its prevention or treatment. The results suggest that the protective effect of MJWQH against H1N1-induced pneumonia is possibly through regulation of pathways for amino acid, fatty acid and arachidonic acid metabolism. They also suggest that the LC-MS-based metabolomic strategy is a powerful tool for elucidation of the mechanisms of TCM.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bakır TÖ, Geyikoglu F, Çolak S, Türkez H, Aslan A, Bakır M. The effects of Cetraria islandica and Pseudevernia furfuracea extracts in normal and diabetic rats. Toxicol Ind Health 2013; 31:1304-17. [DOI: 10.1177/0748233713475521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lichens are symbiotic organisms composed of a fungus joined to a photosynthesizing partner that can be either an alga or a cyanobacterium. They can be used as a novel bioresource for natural antioxidants. However, there is also a need for further studies to validate the lichens used in medicinal remedies. This study covers a previously unrecognized effects of Cetraria islandica (CIAE) and Pseudevernia furfuracea (PFAE) in streptozotocin (STZ)-induced diabetes. In experimental design, control or diabetic rats were either untreated or treated with aqueous lichen extracts (250–500 mg/kg/day) for 2 weeks starting at 72 h after STZ injection. On day 14, animals were anesthetized, metabolic and biochemical parameters were appreciated between control and treatment groups. The histopathology of kidney was examined using four different staining methods: hematoxylin–eosin (H&E), periodic acid-Schiff (PAS), Masson trichrome and Congo red. Our experimental data showed that increasing doses of CIAE and PFAE did not have any detrimental effects on the studied parameters and the malondialdehyde level of kidney. CIAE extract showed prominent results compared to doses of PFAE extract for antioxidant capacity. However, the protective effect of CIAE extract was inadequate on diabetes-induced disorders and kidney damages. Moreover, animals subjected to diabetes mellitus (DM) therapy did not benefit unfortunately from the usage of increasing lichen doses due to their unchanged antioxidant activity to tissue. The results obtained in present study suggested that CIAE and PFAE are safe but the power of these is limited because of the intensive oxidative stress in kidney of type 1 diabetic rats. It is also implied that CIAE extract is especially suitable for different administration routes in DM.
Collapse
Affiliation(s)
- Tülay Özhan Bakır
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Suat Çolak
- Department of Biology, Faculty of Art and Sciences, Artvin Coruh University, Artvin, Turkey
| | - Hasan Türkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ali Aslan
- Department of Biology, Faculty of Kazim Karabekir Education, Ataturk University, Erzurum, Turkey
| | - Murat Bakır
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
45
|
Xu W, Wang H, Chen G, Li W, Xiang R, Pei Y. (1)H NMR-based metabonomics study on the toxicity alleviation effect of other traditional Chinese medicines in Niuhuang Jiedu tablet to realgar (As2S2). JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:88-98. [PMID: 23583735 DOI: 10.1016/j.jep.2013.03.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Niuhuang Jiedu Tablet (NJT) is an effective prescription of traditional Chinese medicine (TCM) used in treating acute tonsillitis, pharyngitis, periodontitis and mouth ulcer. NJT is prepared from Xionghuang (Realgar, As2S2), Rengong Niuhuang (Bovis Calculus Artificialis), Bingpian (Borneolum Synthcticum), Shigao (Gypsum Fibrosum), Dahuang (Rhei Radix et Rhizoma), Huangqin (Scutellariae Radix), Jiegeng (Platycodonis Radix) and Gancao (Glycyrrhizae Radix et Rhizoma). In the prescription, significant level of realgar (As2S2) as a potentially toxic element is contained. AIM OF THE STUDY In this study, (1)H NMR-based metabonomics approach has been used to investigate the toxicity of realgar (As2S2) after being counterbalanced by other TCMs in NJT. MATERIALS AND METHODS Male Wistar rats were divided into five groups: control, group I (treated with Realgar), group II (treated with Realgar, Bovis Calculus Artificialis, Borneolum Synthcticum, Gypsum Fibrosum, Rhei Radix et Rhizoma, Scutellariae Radix, Platycodonis Radix and Glycyrrhizae Radix et Rhizoma), group III (treated with Realgar, Bovis Calculus Artificialis, Borneolum Synthcticum and Gypsum Fibrosum) and group IV (treated with Realgar, Rhei Radix et Rhizoma, Scutellariae Radix, Platycodonis Radix and Glycyrrhizae Radix et Rhizoma). Based on (1)H-NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. RESULTS PLS-DA scores plots demonstrated that the cluster of group I was separated from that of control rats, while group II was located close to control rats, indicating that metabolic profiles of group II were restored toward those of control rats. The metabolic profiles of group III were similar to those of group I, while the metabolic profiles of group II were almost in line with those of group II. Statistics results were confirmed by the histopathological examination and biochemical assay. CONCLUSION Our results indicated that it was more secure and much less toxic for counterbalanced realgar (As2S2) in NJT. The effective material bases of toxicity alleviation to realgar (As2S2) were Dahuang (Rhei Radix et Rhizoma), Huangqin (Scutellariae Radix), Jiegeng (Platycodonis Radix) and Gancao (Glycyrrhizae Radix et Rhizoma), which regulated energy metabolism, choline metabolism, amino acid metabolism and gut flora disorder affected by realgar (As2S2) exposure.
Collapse
Affiliation(s)
- Wenfeng Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Zhao YY. Metabolomics in chronic kidney disease. Clin Chim Acta 2013; 422:59-69. [PMID: 23570820 DOI: 10.1016/j.cca.2013.03.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/24/2022]
Abstract
Chronic kidney disease (CKD) represents a major challenge to public healthcare. Traditional clinical biomarkers of renal function (blood urea nitrogen and serum creatinine) are not sensitive or specific enough and only increase significantly after the presence of substantial CKD. Therefore, more sensitive biomarkers of CKD are needed. CKD-specific biomarkers at an early disease stage and early diagnosis of specific renal diseases would enable improved therapeutic treatment and reduced the personal and financial burdens. The goal of metabolomics is to identify non-targeted, global small-molecule metabolite profiles of complex samples, such as biofluids and tissues. This method offers the potential for a holistic approach to clinical medicine, as well as improvements in disease diagnoses and the understanding of pathological mechanisms. This review article presents an overview of the recent developments in the field of metabolomics, followed by an in-depth discussion of its application to the study of CKD (primary, chronic glomerulonephritis such as IgA nephropathy; secondary, chronic renal injury such as diabetic nephropathy; chronic renal failure including end-stage kidney disease with and without undergoing replacement therapies, etc), including metabolomic analytical technologies, chemometrics, and metabolomics in experimental and clinical research. We describe the current status of the identification of metabolic biomarkers in CKD. Several markers have been confirmed across multiple studies to detect CKD earlier than traditional clinical chemical and histopathological methods. The application of metabolomics in CKD studies provides researchers the opportunity to gain new insights into metabolic profiling and pathophysiological mechanisms. Particular challenges in the field are presented and placed within the context of future applications of metabolomic approaches to the studies of CKD.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|