1
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2024; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Cai L, Du Y, Xiong H, Zheng H. Application of nanotechnology in the treatment of hepatocellular carcinoma. Front Pharmacol 2024; 15:1438819. [PMID: 39679376 PMCID: PMC11637861 DOI: 10.3389/fphar.2024.1438819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Hepatocellular carcinoma is the predominant histologic variant of hepatic malignancy and has become a major challenge to global health. The increasing incidence and mortality of hepatocellular carcinoma has created an urgent need for effective prevention, diagnosis, and treatment strategies. This is despite the impressive results of multiple treatments in the clinic. However, the unique tumor immunosuppressive microenvironment of hepatocellular carcinoma increases the difficulty of treatment and immune tolerance. In recent years, the application of nanoparticles in the treatment of hepatocellular carcinoma has brought new hope for tumor patients. Nano agents target tumor-associated fibroblasts, regulatory T cells, myeloid suppressor cells, tumor-associated macrophages, tumor-associated neutrophils, and immature dendritic cells, reversed the immunosuppressive microenvironment of hepatocellular carcinoma. In addition, he purpose of this review is to summarize the advantages of nanotechnology in guiding surgical excision, local ablation, TACE, standard chemotherapy, and immunotherapy, application of nano-vaccines has also continuously enriched the treatment of liver cancer. This study aims to investigate the potential applications of nanotechnology in the management of hepatocellular carcinoma, with the ultimate goal of enhancing therapeutic outcomes and improving the prognosis for patients affected by this malignancy.
Collapse
Affiliation(s)
| | | | | | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Xiao Y, Ouyang A, Fan L, Qin X, Li Y, Wang Z, Yuan P, Huang X, Hao J, Zhu H, Huang Q, Guo H, Jin R. Precision Delivery of Binary Cooperative Nanodrugs Self-Assembled by Berberine Glycyrrhetinic Acid Salts for Hepatocellular Carcinoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58489-58505. [PMID: 39413019 DOI: 10.1021/acsami.4c15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Berberine (BB) has demonstrated significant inhibitory effects on tumorigenesis and progression. However, its clinical application is hindered by challenges such as low bioavailability due to limited cell membrane permeability, nontargeted accumulation away from solid tumors, and increased toxicity associated with intravenous administration. To overcome these challenges, a lipophilic salt-forming strategy was employed to enhance lipophilicity, thereby promoting membrane permeability and targetability for tumor accumulation while simultaneously mitigating the toxicity associated with intravenous injection. In vitro findings revealed an almost 10-fold increase in fluorescence intensity with BB-GA NDs compared to BB alone. Furthermore, selective cytotoxicity against tumor cells exhibited a 4-fold elevation compared to normal cells. In vivo results underscored the remarkable tumor-selective accumulation of BB-GA NDs, effectively mitigating the intravenous injection toxicity associated with pure BB. The self-assembly of binary cooperative nanodrugs utilizing berberine glycyrrhetinic acid salts opens up innovative possibilities for drug delivery systems in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yang Xiao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Alu Ouyang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Ling Fan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Xin Qin
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Yu Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Zixin Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, P. R. China
| | - Xuejing Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Jie Hao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Hongyan Zhu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Ronghua Jin
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| |
Collapse
|
4
|
Hatawsh A, Al-Haddad RH, Okafor UG, Diab LM, Dekanoidze N, Abdulwahab AA, Mohammed OA, Doghish AS, Moussa R, Elimam H. Mitoepigenetics pathways and natural compounds: a dual approach to combatting hepatocellular carcinoma. Med Oncol 2024; 41:302. [PMID: 39465473 DOI: 10.1007/s12032-024-02538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading liver cancer that significantly impacts global life expectancy and remains challenging to treat due to often late diagnoses. Despite advances in treatment, the prognosis is still poor, especially in advanced stages. Studies have pointed out that investigations into the molecular mechanisms underlying HCC, including mitochondrial dysfunction and epigenetic regulators, are potentially important targets for diagnosis and therapy. Mitoepigenetics, or the epigenetic modifications of mitochondrial DNA, have drawn wide attention for their role in HCC progression. Besides, molecular biomarkers such as mitochondrial DNA alterations and non-coding RNAs showed early diagnosis and prognosis potential. Additionally, natural compounds like alkaloids, resveratrol, curcumin, and flavonoids show promise in HCC show promise in modulating mitochondrial and epigenetic pathways involved in cancer-related processes. This review discusses how mitochondrial dysfunction and epigenetic modifications, especially mitoepigenetics, influence HCC and delves into the potential of natural products as new adjuvant treatments against HCC.
Collapse
Affiliation(s)
- Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Roya Hadi Al-Haddad
- Research and Technology Center of Environment, Water and Renewable Energy, Scientific Research Commission, Baghdad, Iraq
| | | | - Lamis M Diab
- Department of Medical Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sādāt, 32897, Egypt.
| |
Collapse
|
5
|
Xiong D, Gong M, Hou Y, Chen H, Gao T, He L. Euphorbia helioscopia L. extract suppresses hepatitis B virus-related hepatocellular carcinoma via alpha serine/threonine-protein kinase and Caspase-3. J Cancer Res Clin Oncol 2024; 150:442. [PMID: 39356361 PMCID: PMC11446964 DOI: 10.1007/s00432-024-05972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) has poor prognosis and high mortality rate. Euphorbia helioscopia L. (EHL) is a classic Chinese medicinal herb. AIM This study aimed to evaluate in vitro anti-HBV-HCC properties of EHL, and explore it targets in HBV-HCC based on molecular docking. METHODS The anti-tumor effect of EHL on HBV-HCC was evaluated using the cell viability, migration, invasion, and apoptosis of Hep 3B2.1-7 and HepG2.2.15 cells. Next, network pharmacological analysis was performed to predicted the key targets of EHL against HBV-HCC. Then the prognostic targets, including RAC-alpha serine/threonine-protein kinase (AKT1) and Caspase-3 (CASP3), were verified using molecular docking and rescue experiments. RESULTS EHL exhibited inhibitory effects on cell proliferation/migration/invasion and induced cell apoptosis. Network pharmacological analysis proposed 12 active compounds in EHL, which targeted 22 HBV-HCC-related genes. AKT1 and CASP3 were identified to be key targets for EHL against HBV-HCC. AKT1 and CASP3 had prognostic significance in liver cancer. Overexpression of AKT1 and caspase-3 inhibitor can counteract the EHL effect. CONCLUSION EHL can exert anticancer effects on HBV-HCC by inhibiting migration/invasion, and inducing apoptosis, which may be achieved through AKT1 and CASP3.
Collapse
Affiliation(s)
- Dan Xiong
- Department of Psychiatry 2, The Fifth People's Hospital of Jiujiang, Jiujiang, 332000, China
| | - Minyong Gong
- Department of Oncology, Hospital of Traditional Chinese Medicine of Jiujiang, No. 555, Dehua Road, Wuli Street, Lianxi District, Jiujiang City, 332000, Jiangxi Province, China
| | - Yanjun Hou
- Department of Oncology, Hospital of Traditional Chinese Medicine of Jiujiang, No. 555, Dehua Road, Wuli Street, Lianxi District, Jiujiang City, 332000, Jiangxi Province, China
| | - Haibing Chen
- Department of Psychiatry 2, The Fifth People's Hospital of Jiujiang, Jiujiang, 332000, China
| | - Tiexin Gao
- Department of Oncology, Hospital of Traditional Chinese Medicine of Jiujiang, No. 555, Dehua Road, Wuli Street, Lianxi District, Jiujiang City, 332000, Jiangxi Province, China
| | - Liuxin He
- Department of Oncology, Hospital of Traditional Chinese Medicine of Jiujiang, No. 555, Dehua Road, Wuli Street, Lianxi District, Jiujiang City, 332000, Jiangxi Province, China.
| |
Collapse
|
6
|
Nong TAT, Le TTH, Vu VT, Nguyen MQ, Can DQH, Dong THY, Nguyen TPT, Hoang VH, Nguyen PH. Inhibitory Activity of Compounds Isolated from Ligustrum robustum (Roxb.) Against HepG2 Liver Cancer Cells: Isocubein and 4-(2-Acetoxyethyl)phenol as Potential Candidates. Chem Biodivers 2024; 21:e202401065. [PMID: 39004876 DOI: 10.1002/cbdv.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Many herbal species in the genus Ligustrum have been shown to contain compounds with anti-cancer biological activity. This study aimed to isolate some compounds from the leaves of Ligustrum robustum (Roxb.) Blume (L. robustum) and evaluate their effects against liver cancer cells. As a result, seven previously reported compounds (1-7) were isolated, including four lignans (1-4) and three phenolic derivatives (5-7). The structures of these compounds were determined using spectroscopic methods and comparison with reported data. All isolates were assessed for their inhibitory effects on HepG2 liver cancer cells. Screening results revealed that two compounds, isocubein (3) and 4-(2-acetoxyethyl)phenol (7), exhibited strong inhibitory activity against cell proliferation, with IC50 values of 3.1±0.9 and 4.5±14 μM, respectively. Further analyses demonstrated that both compounds could suppress the formation and development of 3D tumorspheres in terms of quantity and size. Additionally, isocubein (3) and 4-(2-acetoxyethyl)phenol (7) exhibited the ability to inhibit the migration of HepG2 cells. This study represents the first report on the inhibitory activity against HepG2 liver cancer cells of extracts and isolated compounds from L. robustum, providing valuable information for future research aiming to develop products for liver cancer treatment.
Collapse
Affiliation(s)
- Thi Anh Thu Nong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Thanh Huong Le
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Tuan Vu
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Mai Quynh Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Dinh Quang Hung Can
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Hoang Yen Dong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Phuong Thao Nguyen
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Hung Hoang
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Phu Hung Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| |
Collapse
|
7
|
Huang J, Shi R, Chen F, Tan HY, Zheng J, Wang N, Li R, Wang Y, Yang T, Feng Y, Zhong Z. Exploring the anti-hepatocellular carcinoma effects of Xianglian Pill: Integrating network pharmacology and RNA sequencing via in silico and in vitro studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155905. [PMID: 39128301 DOI: 10.1016/j.phymed.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 05/21/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Liver cancer represents a most common and fatal cancer worldwide. Xianglian Pill (XLP) is an herbal formula holding great promise in clearing heat for treating diseases in an integrative and holistic way. However, due to the complex constituents and multiple targets, the exact molecular mechanisms of action of XLP are still unclear. PURPOSE This study is focused on hepatocellular carcinoma (HCC), the most common type of liver cancer. The aim of this study is to develop a fast and efficient model to investigate the anti-HCC effects of XLP, and its underlying mechanisms. MATERIALS AND METHODS HepG2, Hep3B, Mahlavu, HuH-7, or Li-7 cells were employed in the studies. The ingredients were analyzed using liquid chromatography tandem mass spectrometry (LC-MS). RNA sequencing combined with network pharmacology was used to elucidate the therapeutic mechanism of XLP in HCC via in silico and in vitro studies. An approach was constructed to improve the accuracy of prediction in network pharmacology by combining big data and omics. RESULTS First, we identified 13 potential ingredients in the serum of XLP-administered rats using LC-MS. Then the network pharmacology was performed to predict that XLP demonstrates anti-HCC effects via targeting 94 genes involving in 13 components. Modifying the database thresholds might impact the accuracy of network pharmacology analysis based on RNA sequencing data. For instance, when the matching rate peak is 0.43, the correctness rate peak is 0.85. Moreover, 9 components of XLP and 6 relevant genes have been verified with CCK-8 and RT-qPCR assay, respectively. CONCLUSION Based on the crossing studies of RNA sequencing and network pharmacology, XLP was found to improve HCC through multiple targets and pathways. Additionally, the study provides a way to optimize network pharmacology analysis in herbal medicine research.
Collapse
Affiliation(s)
- Jihan Huang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruipeng Shi
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jinbin Zheng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ran Li
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulin Wang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Yang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
8
|
Bukhari SH, Abraham D, Mahesh S. The Efficacy of Aloe vera Against Enterococcus faecalis as an Intracanal Medicament: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e70140. [PMID: 39463527 PMCID: PMC11506314 DOI: 10.7759/cureus.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Calcium hydroxide (CaOH) is commonly used as an intracanal medicament due to its antimicrobial properties; its antibacterial property depends on the release of hydroxyl ions. By analyzing experimental in vitro studies related to the research question, many studies carried out bacterial inoculation on extracted human teeth or laboratory Petri dishes. This review article seeks to assess the antimicrobial efficacy of Aloe vera (AV) against Enterococcus faecalis in comparison to CaOH as an intracanal medicament. After being retrieved from databases such as PubMed, Scopus, the Cochrane Library, and EBSCOhost, publications from 2013 to 2024 were screened against our inclusion criteria. As a result, seven papers were included in the systematic review and four in the meta-analysis. Using a meta-analysis (Stata software version 16.0, StataCorp LLC, College Station, TX) to compare colony-forming units (CFUs) formed by CaOH and AV, forest plots were created to record the specimen size, mean, and standard deviation value of the outcome in CFU, at 95% confidence intervals. AV exhibits bactericidal qualities that are equal to or comparable to those of CaOH. AV displayed a nonsignificantly reduced CFU count than CaOH in a meta-analysis (p > 0.05). In summary, AV exhibits antibacterial/antimicrobial capabilities against E. faecalis that are equal to or comparable to CaOH.
Collapse
Affiliation(s)
- Seema H Bukhari
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Dax Abraham
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Shakila Mahesh
- Department of Microbiology, Manav Rachna Dental College, Faridabad, IND
| |
Collapse
|
9
|
Li X, Chen X, Yu H, Huang R, Wu P, Gong Y, Chen X, Liu C. Knockdown and Overexpression Experiments to Investigate the Inhibitory Mechanism of Fuzheng Xiaozheng Prescription, an Effective Chinese Herbal Formula for the Clinical Treatment of Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:1159. [PMID: 39338323 PMCID: PMC11434836 DOI: 10.3390/ph17091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Fuzheng Xiaozheng prescription (FZXZP) is an effective formula for the treatment of different kinds of chronic liver diseases. However, its potential molecular mechanisms in treating hepatocellular carcinoma (HCC) have not been investigated thoroughly. The aim of this study is to elucidate the targets and intrinsic mechanisms of FZXZP and their active components for the treatment of HCC. The efficacy of FZXZP against HCC was clarified through a rat HCC model and HCC cell culture. Network pharmacology and molecular docking were utilized to predict the mechanism of action and effector components of FZXZP. The key mechanism and targets were verified by the construction of overexpression and knockout cell models. The results showed that FZXZP greatly delayed the development of HCC in vivo experiments, as evidenced by biochemical evaluations, H&E analyses and growth inhibition of HCC. FZXZP dramatically inhibited cell viability and proliferative capacity and induced the apoptosis of hepatoma cells in vitro. Moreover, network pharmacology analyses demonstrated that the EGFR family and apoptosis-related targets were found to be the most significant in bioinformatics analysis. Furthermore, the EGFR/STAT3 signal axis might be the most likely target of FZXZP in anti-HCC due to the fact that it could be down-regulated by FZXZP with an upward trend of Bax, Caspase-3, Caspase-8, Caspase-9 and an inverse trend of Bcl2. Importantly, the above targeted signal axis was finally validated by our knockdown and overexpression analyses. Meanwhile, flow cytometry and TUNEL staining also revealed that FZXZP significantly induced apoptosis in the EGFR-overexpressing HCC cell line. The molecular docking results revealed that the key effector components of FZXZP that exerted the above regulatory roles were wogonin and glycitein. All of these results suggest that FZXZP could significantly delay HCC development by inhibiting proliferation and promoting apoptosis of HCC cells, and the EGFR/STAT3 signal axis might be a critical signal axis of FZXZP in suppressing HCC progression.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofeng Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Renwei Huang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China
| | - Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiping Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Velaiyan M, Muthusamy R, Kativa M, Annamalai A, Govindhan A, Punniyakotti P, Balupillai A. Gallic acid-loaded chitosan nanoparticles enhance the DNA damage and apoptotic features through inhibiting flap endonuclease-1 in triple-negative breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:4171-4183. [PMID: 38666519 DOI: 10.1002/tox.24293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 07/14/2024]
Abstract
This study investigated the fabrication of gallic acid-loaded chitosan nanoparticles (Gal-Chi-NPs) that enhanced the DNA damage and apoptotic features by inhibiting FEN-1 expressions in MDA-MB 231 cells. Gal-Chi-NPs were fabricated by the ionic gelation method, and it was characterized by several studies such as dynamic light spectroscopy, Fourier-transforms infrared spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray, atomic force microscopy, and thermogravimetric analysis. We have obtained that Gal-Chi-NPs displayed 182.2 nm with crystal, smooth surface, and heat stability in nature. Gal-Chi-NPs induce significant toxicity in MDA-MB-231 cells that compared with normal NIH-3T3 cells. A significant reactive oxygen species (ROS) overproduction was observed in Gal-Chi-NPs treated MDA-MB-231. Flap endonuclease-1 (FEN-1) is a crucial protein involved in long patch base excision repair that is involved in repairing the chemotherapeutic mediated DNA-damaged base. Therefore, inhibition of FEN-1 protein expression is a crucial target for enhancing chemotherapeutical efficacy. In this study, we have obtained that Gal-Chi-NPs treatment enhanced the DNA damage by observing increased p-H2AX, PARP1; and suppressed the expression of FEN-1 in MDA-MB-231 cells. Moreover, Gal-Chi-NPs inhibited the expression of tumor proliferating markers p-PI3K, AKT, cyclin-D1, PCNA, and BCL-2; induced proapoptotic proteins (Bax and caspase-3) in MDA-MB 231 cells. Thus, Gal-Chi-NPs induce DNA damage and apoptotic features and inhibit tumor proliferation by suppressing FEN-1 expression in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Monica Velaiyan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajasekar Muthusamy
- Central Research Laboratory, Vinayaka Mission's Kirupananda Variyar Medical College and Hospitals, Salem, Tamil Nadu, India
| | - Miguel Kativa
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Asaikkutti Annamalai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Govindhan
- Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Parthipan Punniyakotti
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Agilan Balupillai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
11
|
Tomsuk Ö, Kuete V, Sivas H, Kürkçüoğlu M. Effects of essential oil of Origanum onites and its major component carvacrol on the expression of toxicity pathway genes in HepG2 cells. BMC Complement Med Ther 2024; 24:265. [PMID: 38992651 PMCID: PMC11238398 DOI: 10.1186/s12906-024-04571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Origanum species have been used in various commercial constructions as a remedy against burns and wounds, agriculture, alcoholic drinks, fragrance, and flavoring substances of food products. The essential oil of Origanum onites L. (EOOO) and its component carvacrol (CV) possesses a wide range of biological activities including anti-cancer activity. PURPOSE The purpose of this study was to investigate the growth inhibitory activity of the essential oil and its major component CV and then hepatotoxicity pathway-related genes in HepG2 cells. METHODS The effects of the EOOO and CV on cell growth and mRNA expressions of 84 hepatotoxicity pathway-related genes were investigated in HepG2, using trypan blue exclusion/ bromodeoxyuridine (BrdU) incorporation tests and real-time-polymerase chain reaction (RT-PCR) array, respectively. RESULTS The EOOO and CV inhibited cell growth with IC50 values of 0.08 µg/mL and 45 µg/mL, respectively, after 24 h. Real-time, reverse-transcription-polymerase chain reaction (RT2-PCR) array analysis revealed that expressions of 32 genes out of 84 were changed at least 2-fold or more in the EOOO-treated cells. Among them, expression levels of 17 genes were elevated, while expression levels of 15 genes were diminished. Furthermore, after exposure of cells to 45 µg/mL of CV, the expression of 8 genes was increased while the other 8 genes were decreased. Both the EOOO and carvacrol affected the expression of 48 genes of HepG2 cells which are involved in the hepatotoxicity pathway, indicating their hepatoprotective and possible anti-hepatocarcinogenic effects. CONCLUSION The present study demonstrates that the essential oil of Origanum onites and carvacrol can be used in various applications such as anticancer or herbal drugs, since its non-hepatotoxicity.
Collapse
Affiliation(s)
- Özlem Tomsuk
- Cellular Therapy and Stem Cell Production Application and Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26480, Turkey.
- Graduate School of Natural and Applied Sciences, Biotechnology and Biosafety Department, Eskişehir Osmangazi University, Eskişehir, Turkey.
- Faculty of Sciences, Department of Biology, Anadolu University, Eskişehir Technical University, Eskişehir, Turkey.
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 1499, Bafoussam, Cameroon.
| | - Hülya Sivas
- Faculty of Sciences, Department of Biology, Anadolu University, Eskişehir Technical University, Eskişehir, Turkey
| | - Mine Kürkçüoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
12
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Praveen Kumar PK, Sundar H, Balakrishnan K, Subramaniam S, Ramachandran H, Kevin M, Michael Gromiha M. The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma. Mol Biotechnol 2024:10.1007/s12033-024-01151-4. [PMID: 38684604 DOI: 10.1007/s12033-024-01151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the predominant form of liver cancer and arises due to dysregulation of the cell cycle control machinery. Heat Shock Protein 90 (HSP90) and mitochondrial HSP90, also referred to as TRAP1 are important critical chaperone target receptors for early diagnosis and targeting HCC. Both HSP90 and TRAP1 expression was found to be higher in HCC patients. Hence, the importance of HSP90 and TRAP1 inhibitors mechanism and mitochondrial targeted delivery of those inhibitors function is widely studied. This review also focuses on importance of protein-protein interactions of HSP90 and TRAP1 targets and association of its interacting proteins in various pathways of HCC. To further elucidate the mechanism, systems biology approaches and computational biology approach studies are well explored in the association of inhibition of herbal plant molecules with HSP90 and its mitochondrial type in HCC.
Collapse
Affiliation(s)
- P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harini Sundar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Kamalavarshini Balakrishnan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Sakthivel Subramaniam
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Hemalatha Ramachandran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Kevin
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
14
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
15
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
16
|
Zhang S, Wang Y, Wang B, Zeng Y, Li J, Wang X, Hu C, Weng Z, Wang Z. Effect of curcumin on malignant hepatocytes and mitochondria studied using atomic force microscopy. Micron 2024; 177:103573. [PMID: 38043195 DOI: 10.1016/j.micron.2023.103573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Mitochondria are emerging as potential targets for the cancer treatment. In this study, the effects of curcumin on the activity, migration, and mitochondrial membrane potential (MMP) of malignant hepatocytes (SMMC-7721 cells) were determined using cell viability, migration, and MMP assays. Changes in the morphology and biomechanics of SMMC-7721 cells and their mitochondria were studied using both optical microscopy and atomic force microscopy (AFM). The cell survival rate, migration and MMP depended on the concentration of curcumin. Optical microscopy studies showed that curcumin altered the cell morphology. AFM studies showed that the changes in the morphology and nanomechanics of SMMC-7721 cells and their mitochondria, were induced by curcumin. As the concentration of curcumin increased, the cell length, width, and adhesion decreased, but the height, roughness and Young's modulus increased. In contrast, the mitochondrial length, width, height and roughness increased, but the adhesion and Young's modulus decreased. There was a close relationship between mitochondria and cells in terms of function, morphology and biomechanics. This study shows the effects of curcumin on SMMC-7721 cells and their mitochondria from biology and biophysics perspectives. The findings aid in comprehensively understanding the interactions between mitochondria and malignant hepatocytes.
Collapse
Affiliation(s)
- Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Yi Zeng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiani Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Xingyue Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Cuihua Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK.
| |
Collapse
|
17
|
Zhang S, Zhang X, Du J, Wang W, Pi X. Multi-target meridians classification based on the topological structure of anti-cancer phytochemicals using deep learning. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117244. [PMID: 37777031 DOI: 10.1016/j.jep.2023.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) meridian is the key theoretical guidance of prescription against tumor in clinical practice. However, there is no scientific and systematic verification of therapeutic action of herbs under meridians context. Several studies have determined the Chinese herbal medicine (CHM) phytochemicals for intrinsic attribute or meridians classification based on artificial intelligence (AI) tools. However, it is challenging to represent the complex molecular structures with large heterogeneity through the current technologies. In addition, the multiple correspondence between herbs and meridians has not been paid much attention. AIM OF THE STUDY We aim to develop an AI framework to classify multi-target meridians through the topological structure of phytochemicals. MATERIALS AND METHODS A total of 354 anti-cancer herbs, their corresponding TCM meridians and 5471 ingredient compounds were collected from public databases of CancerHSP, ETCM, and Hit 2.0. The statistical analysis of herbal and compound datasets, clustering analysis of the associated cancers, and correlational analysis of meridian tropism were preliminary conducted. Then a deep learning (DL) hybrid model named GRMC consisting of graph convolutional network (GCN) and recurrent neural network (RNN) was employed to generate the meridian multi-label sequences based on molecular graph. RESULTS The curing herbs against tumors have tight relationships to lung, liver, stomach, and spleen meridians. These herbs behave different properties in curing certain cancer. Certain cancer types have co-occurrence such as ovarian, bladder and cervical cancer. Compounds have multitarget meridians with characteristics of higher-order correlations. Compared with the other state-of-the-art algorithms on the datasets and previous methods dealing with conventional fixed fingerprints of herbal compounds, the proposed GRMC has superior overall performance on testing dataset with the one error of 0.183, hamming loss of 0.112, mean averaged accuracy (MAA) of 0.855, mean averaged precision (MAP) of 0.891, mean averaged recall (MAR) of 0.812, and mean averaged F1 score (MAF) of 0.849. CONCLUSIONS The proposed method can predict multi-targeted meridians through neural graph features in herbal compounds and outperforms several comparison methods. It could provide a basis for understanding the molecular scientific evidence of TCM meridians.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Shapingba District, Chongqing, 400044, PR China.
| | - Xianwei Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Shapingba District, Chongqing, 400044, PR China.
| | - Jiayin Du
- School of Pharmacy, Chongqing University, Chongqing, 400044, PR China.
| | - Wei Wang
- Department of Cardiology, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China.
| | - Xitian Pi
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Shapingba District, Chongqing, 400044, PR China.
| |
Collapse
|
18
|
Wu L, Shan L, Xu D, Lin D, Bai B. Pyroptosis in cancer treatment and prevention: the role of natural products and their bioactive compounds. Med Oncol 2024; 41:66. [PMID: 38281254 DOI: 10.1007/s12032-023-02293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.
Collapse
Affiliation(s)
- Liyi Wu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, People's Republic of China
| | - Lina Shan
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengyong Xu
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengfeng Lin
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bingjun Bai
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China.
| |
Collapse
|
19
|
Kong P, Tang X, Liu F, Tang X. Astragaloside IV regulates circ_0001615 and miR-873-5p/LASP1 axis to suppress colorectal cancer cell progression. Chem Biol Drug Des 2024; 103:e14423. [PMID: 38230773 DOI: 10.1111/cbdd.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Astragaloside IV (AS-IV) has exhibited pivotal anti-cancer efficacy in multiple types of cancer, including colorectal cancer (CRC). Meanwhile, circular RNA (circRNA) circ_0001615 has been reported to be involved in the malignant development of CRC. Herein, this study is expected to figure out the interaction between circ_0001615 and AS-IV on CRC progression. The 50% inhibition concentration (IC50), proliferation, apoptosis, and migration were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and wound healing assays. The expression of related proteins was examined by western blot. Circ_0001615, microRNA-873-5p (miR-873-5p), and LIM and SH3 protein 1 (LASP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The binding between miR-873-5p and circ_0001615, or LASP1, was predicted by Starbase, followed by verification by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The biological role of circ_0001615 and AS-IV on CRC tumor growth was detected by the xenograft tumor model in vivo. According to the IC50 of AS-IV in CRC cells, the 100 ng/mL AS-IV treatment for 24 h was chosen for the following research: Our data confirmed that AS-IV is a beneficial anti-cancer agent in CRC cells. Furthermore, circ_0001615 and LASP1 expression were increased, and miR-873-5p was decreased in CRC patients and cell lines, whereas their expression exhibited an opposite trend in AS-IV-treated cells. Functionally, applying AS-IV might act as a beneficial anti-cancer effect by downregulating circ_0001615 in CRC cells in vitro. Mechanically, circ_0001615 serves as a sponge for miR-873-5p to affect LASP1 expression. In addition, AS-IV inhibited CRC cell growth in vivo by modulating circ_0001615. Overall, AS-IV could mitigate CRC development, at least in part, through the circ_0001615/miR-873-5p/LASP1 axis. These findings support a theoretical basis for an in-depth study of the function of AS-IV and the clinical treatment of CRC.
Collapse
Affiliation(s)
- Pengfei Kong
- Department of Anorectal of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Xuemei Tang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| | - Fang Liu
- Department of Anorectal of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Xuegui Tang
- Department of Anorectal of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan, China
| |
Collapse
|
20
|
Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, He N. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets 2024; 24:1587-1610. [PMID: 38347798 DOI: 10.2174/0118715303283164240126104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 10/22/2024]
Abstract
Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas' Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/ stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abeeha Imtiaz
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| |
Collapse
|
21
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
22
|
Wu C, Zhang R, Wang J, Chen Y, Zhu W, Yi X, Wang Y, Wang L, Liu P, Li P. Dioscorea nipponica Makino: A comprehensive review of its chemical composition and pharmacology on chronic kidney disease. Biomed Pharmacother 2023; 167:115508. [PMID: 37716118 DOI: 10.1016/j.biopha.2023.115508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a widespread ailment that significantly impacts global health. It is characterized by high prevalence, poor prognosis, and substantial healthcare costs, making it a major public health concern. The current clinical treatments for CKD are not entirely satisfactory, leading to a high demand for alternative therapeutic options. Chinese herbal medicine, with its long history, diverse varieties, and proven efficacy, offers a promising avenue for exploration. One such Chinese herbal medicine, Dioscorea nipponica Makino (DNM), is frequently used to treat kidney diseases. In this review, we have compiled studies examining the mechanisms of action of DNM in the context of CKD, focusing on five primary areas: improvement of oxidative stress, inhibition of renal fibrosis, regulation of metabolism, reduction of inflammatory response, and regulation of autophagy.
Collapse
Affiliation(s)
- Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiang Yi
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
23
|
Liu H, Zhang W, Jin L, Liu S, Liang L, Wei Y. Plumbagin Exhibits Genotoxicity and Induces G2/M Cell Cycle Arrest via ROS-Mediated Oxidative Stress and Activation of ATM-p53 Signaling Pathway in Hepatocellular Cells. Int J Mol Sci 2023; 24:ijms24076279. [PMID: 37047251 PMCID: PMC10094147 DOI: 10.3390/ijms24076279] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, PLB), a naturally occurring naphthoquinone mainly isolated from the plant Plumbago zeylanica L., has been proven to possess anticancer activities towards multiple types of cancer. Although there has been an increasing amount of research regarding its anticancer effects, the association between oxidative stress, genotoxicity and the cell cycle arrest induced by PLB still remains unclear. Therefore, it is important to investigate their potential connections and the involvement of DNA damage and the ataxia telangiectasia mutated protein (ATM)-p53 signaling pathway in PLB’s anticancer mechanism. The present study showed that PLB exposure significantly reduced HCC cell viability and colony formation. In addition, PLB-induced G2/M cell cycle arrest, oxidative stress, and DNA damage was detected, which could be almost blocked by NAC pretreatment. PLB could trigger a DNA damage response by activating cell cycle checkpoints such as ATM, checkpoint kinase 1 (Chk1), checkpoint kinase 2 (Chk2) and p53. Meanwhile, the key modulator of the G2/M transition factor, Cell Division Cycle 25C (cdc25C), was significantly downregulated in an ROS-dependent manner. Furthermore, pretreatment with ATM and p53 inhibitors (KU55933 and Pifithrin-α) could reduce the occurrence of G2/M cell cycle arrest by inhibiting the activation of the ATM-p53 pathway. Taken together, these results indicate that ROS-mediated oxidative stress plays a key role in PLB-induced G2/M cell cycle arrest mediated by the ATM-p53 pathway.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Medical Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530024, China; (H.L.)
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
| | - Wenchao Zhang
- Research Center for Non-Food Biorefinery, Guangxi Academy of Science, Nanning 530001, China
| | - Lijie Jin
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shasha Liu
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liying Liang
- Laboratory of Medical Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530024, China; (H.L.)
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
| | - Yanfei Wei
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence:
| |
Collapse
|
24
|
Curcumin-Loaded Platelet Membrane Bioinspired Chitosan-Modified Liposome for Effective Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15020631. [PMID: 36839952 PMCID: PMC9965064 DOI: 10.3390/pharmaceutics15020631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is a serious threat to human health, and chemotherapy for cancer is limited by severe side effects. Curcumin (CUR) is a commonly used natural product for antitumor treatment without safety concerns. However, low bioavailability and poor tumor accumulation are great obstacles for its clinical application. Our previous research has demonstrated that platelet membrane-camouflaged nanoparticles can efficiently ameliorate the in vivo kinetic characteristics and enhance the tumor affinity of payloads. Nevertheless, the antitumor efficiency of this formulation still needs to be thoroughly investigated, and its drug release behavior is limited. Herein, CUR-loaded platelet membrane bioinspired chitosan-modified liposome (PCLP-CUR) was constructed to improve CUR release. PCLP-CUR was shown to have long retention time, improved bioavailability, strong tumor targeting capacity and effective cellular uptake. The incorporation of chitosan enabled PCLP-CUR to release cargoes quickly under mild acidic tumor conditions, leading to more complete drug release and favoring subsequent treatment. Both in vitro and in vivo investigations showed that PCLP-CUR could significantly enhance the anticancer efficacy of CUR with minimal side effects through biomimetic membrane and chitosan modification. In summary, this developed delivery system can provide a promising strategy for tumor-targeting therapy and phytochemical delivery.
Collapse
|
25
|
Dai W, Yang J, Liu X, Mei Q, Peng W, Hu X. Anti-colorectal cancer of Ardisia gigantifolia Stapf. and targets prediction via network pharmacology and molecular docking study. BMC Complement Med Ther 2023; 23:4. [PMID: 36624500 PMCID: PMC9827653 DOI: 10.1186/s12906-022-03822-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ardisia gigantifolia Stapf. (AGS), a Chinese folk medicine widely grows in the south of China and several studies reported that AGS could inhibit the proliferation of breast cancer, liver cancer, and bladder cancer cell lines. However, little is known about its anti-colorectal cancer (CRC) efficiency. METHODS In the present study, a combination of MTT assay, network pharmacological analysis, bioinformatics, molecular docking, and molecular dynamics simulation study was used to investigate the active ingredients, and targets of AGS against CRC, as well as the potential mechanism. RESULTS MTT assay showed that three kinds of fractions from AGS, including the n-butanol extract (NBAGS), ethyl acetate fraction (EAAGS), and petroleum ether fraction (PEAGS) significantly inhibited the proliferation of CRC cells, with the IC50 values of 197.24, 264.85, 15.45 µg/mL on HCT116 cells, and 523.6, 323.59, 150.31 µg/mL on SW620 cells, respectively. Eleven active ingredients, including, 11-O-galloylbergenin, 11-O-protocatechuoylbergenin, 11-O-syringylbergenin, ardisiacrispin B, bergenin, epicatechin-3-gallate, gallic acid, quercetin, stigmasterol, stigmasterol-3-o-β-D-glucopyranoside were identified. A total of 173 targets related to the bioactive components and 21,572 targets related to CRC were picked out through database searching. Based on the crossover targets of AGS and CRC, a protein-protein interaction network was built up by the String database, from which it was concluded that the core targets would be SRC, MAPK1, ESR1, HSP90AA1, MAPK8. Besides, GO analysis showed that the numbers of biological process, cellular component, and molecular function of AGS against CRC were 1079, 44, and 132, respectively, and KEGG pathway enrichment indicated that 96 signaling pathways in all would probably be involved in AGS against CRC, among which MAPK signaling pathway, lipid, and atherosclerosis, proteoglycans in cancer, prostate cancer, adherens junction would probably be the major pathways. The docking study verified that AGS had multiple ingredients and multiple targets against CRC. Molecular dynamics (MD) simulation analysis showed that the binding would be stable via forming hydrogen bonds. CONCLUSION Our study showed that AGS had good anti-CRC potency with the characteristics of multi-ingredients, -targets, and -signaling pathways.
Collapse
Affiliation(s)
- Weibo Dai
- grid.411866.c0000 0000 8848 7685Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, 528401 Zhongshan, PR China
| | - Jing Yang
- grid.411866.c0000 0000 8848 7685Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, 528401 Zhongshan, PR China ,Zhongshan Torch Development Zone People’s Hospital, 528401 Zhongshan, PR China
| | - Xin Liu
- grid.411866.c0000 0000 8848 7685Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, 528401 Zhongshan, PR China
| | - Quanxi Mei
- Shenzhen Baoan Authentic TCM Therapy Hospital, 518101 Shenzhen, PR China
| | - Weijie Peng
- grid.411866.c0000 0000 8848 7685Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, 528401 Zhongshan, PR China
| | - Xianjing Hu
- grid.410560.60000 0004 1760 3078Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808 Dongguan, PR China
| |
Collapse
|
26
|
Banerjee A, Sriramulu S, Catanzaro R, He F, Chabria Y, Balakrishnan B, Hari S, Ayala A, Muñoz M, Pathak S, Marotta F. Natural Compounds as Integrative Therapy for Liver Protection against Inflammatory and Carcinogenic Mechanisms: From Induction to Molecular Biology Advancement. Curr Mol Med 2023; 23:216-231. [PMID: 35297348 DOI: 10.2174/1566524022666220316102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/20/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
The liver is exposed to several harmful substances that bear the potential to cause excessive liver damage ranging from hepatitis and non-alcoholic fatty liver disease to extreme cases of liver cirrhosis and hepatocellular carcinoma. Liver ailments have been effectively treated from very old times with Chinese medicinal herbal formulations and later also applied by controlled trials in Japan. However, these traditional practices have been hardly well characterized in the past till in the last decades when more qualified studies have been carried out. Modern advances have given rise to specific molecular targets which are specifically good candidates for affecting the intricate mechanisms that play a role at the molecular level. These therapeutic regimens that mainly affect the progression of the disease by inhibiting the gene expression levels or by blocking essential molecular pathways or releasing cytokines may prove to play a vital role in minimizing the tissue damage. This review, therefore, tries to throw light upon the variation in the therapies for the treatment of benign and malignant liver disease from ancient times to the current date. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of benign chronic liver diseases as well as prevention and treatment of HCC is still warranted.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Roberto Catanzaro
- Dept of Clinical and Experimental Medicine, Section of Gastroenterology, University of Catania, Catania, Italy
| | - Fang He
- Dept of Nutrition, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yashna Chabria
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Sruthi Hari
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antonio Ayala
- Biochemistry and Clinical Biochemistry Department, Faculty of Pharmacy, University of Seville, Spain
| | - Mario Muñoz
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano, Italy and Vitality and Longevity Medical Science Commission, FEMTEC World Federation
| |
Collapse
|
27
|
Exploiting Polyphenol-Mediated Redox Reorientation in Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15121540. [PMID: 36558995 PMCID: PMC9787032 DOI: 10.3390/ph15121540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Polyphenol, one of the major components that exert the therapeutic effect of Chinese herbal medicine (CHM), comprises several categories, including flavonoids, phenolic acids, lignans and stilbenes, and has long been studied in oncology due to its significant efficacy against cancers in vitro and in vivo. Recent evidence has linked this antitumor activity to the role of polyphenols in the modulation of redox homeostasis (e.g., pro/antioxidative effect) in cancer cells. Dysregulation of redox homeostasis could lead to the overproduction of reactive oxygen species (ROS), resulting in oxidative stress, which is essential for many aspects of tumors, such as tumorigenesis, progression, and drug resistance. Thus, investigating the ROS-mediated anticancer properties of polyphenols is beneficial for the discovery and development of novel pharmacologic agents. In this review, we summarized these extensively studied polyphenols and discussed the regulatory mechanisms related to the modulation of redox homeostasis that are involved in their antitumor property. In addition, we discussed novel technologies and strategies that could promote the development of CHM-derived polyphenols to improve their versatile anticancer properties, including the development of novel delivery systems, chemical modification, and combination with other agents.
Collapse
|
28
|
Bioinspired Platelet-like Nanovector for Enhancing Cancer Therapy via P-Selectin Targeting. Pharmaceutics 2022; 14:pharmaceutics14122614. [PMID: 36559108 PMCID: PMC9783179 DOI: 10.3390/pharmaceutics14122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a major threat to the health of humans. Recently, various natural products including curcumin (CCM) have attracted enormous interest for efficacious cancer therapy. However, natural therapeutic agents still encounter certain challenges such as rapid clearance, low bioavailability, and poor tumor targeting. Recently, the platelet membrane (PM) camouflaged nanoparticle has provided a promising solution for cancer targeting therapy. Nevertheless, only limited efforts have been dedicated to systematically explore the mechanism of affinity between PM bioinspired nanoparticles and various tumor cells. Herein, a CCM-encapsulated platelet membrane biomimetic lipid vesicle (CCM@PL) with a size of 163.2 nm, zeta potential of -31.8 mV and encapsulation efficiency of 93.62% was developed. The values of the area under the concentration-time curve and mean residence time for CCM@PL were 3.08 times and 3.04 times those of CCM, respectively. Furthermore, this PM biomimetic carrier showed an excellent affinity against Huh-7, SK-OV-3 and MDA-MB-231 cell lines due to the biomolecular interaction between P-selectin on the PM and tumoral CD44 receptors. In addition, CCM@PL displayed enhanced cytotoxicity compared with free CCM and the synthetic formulation. Overall, our results suggest that this developed PM biomimetic lipid nanovector has great potential for targeted cancer treatment and natural components delivery.
Collapse
|
29
|
Zheng S, Pan B. Multilevel data integration and molecular docking approach to systematically elucidate the underlying pharmacological mechanisms of Er-Zhi-Wan against hepatocellular carcinoma. Aging (Albany NY) 2022; 14:8783-8804. [DOI: 10.18632/aging.204369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shaoyan Zheng
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, P.R. China
- Traditional Chinese Medicine Department, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, P.R. China
| | - Botao Pan
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, P.R. China
| |
Collapse
|
30
|
Ke G, Zhang J, Gao W, Chen J, Liu L, Wang S, Zhang H, Yan G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front Pharmacol 2022; 13:1038063. [PMID: 36313284 PMCID: PMC9606699 DOI: 10.3389/fphar.2022.1038063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Although cancer has seriously threatened people’s health, it is also identified by the World Health Organization as a controllable, treatable and even curable chronic disease. Traditional Chinese medicine (TCM) has been extensively used to treat cancer due to its multiple targets, minimum side effects and potent therapeutic effects, and thus plays an important role in all stages of tumor therapy. With the continuous progress in cancer treatment, the overall efficacy of cancer therapy has been significantly improved, and the survival time of patients has been dramatically prolonged. In recent years, a series of advanced technologies, including nanotechnology, gene editing technology, real-time cell-based assay (RTCA) technology, and flow cytometry analysis technology, have been developed and applied to study TCM for cancer therapy, which efficiently improve the medicinal value of TCM and accelerate the research progress of TCM in cancer therapy. Therefore, the applications of these advanced technologies in TCM for cancer therapy are summarized in this review. We hope this review will provide a good guidance for TCM in cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Ke
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wufeng Gao
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| | - Guojun Yan
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| |
Collapse
|
31
|
Chen SL, Ho CY, Lin WC, Lee CW, Chen YC, Chen JL, Chen HY. The Characteristics and Mortality of Chinese Herbal Medicine Users among Newly Diagnosed Inoperable Huge Hepatocellular Carcinoma (≥10 cm) Patients: A Retrospective Cohort Study with Exploration of Core Herbs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912480. [PMID: 36231778 PMCID: PMC9564474 DOI: 10.3390/ijerph191912480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 05/03/2023]
Abstract
For patients with inoperable huge hepatocellular carcinoma (H-HCC, tumor size ≥10 cm), treatment options are limited. This study aimed to evaluate the characteristics and outcomes of patients with H-HCC who use Chinese herbal medicine (CHM). Multi-institutional cohort data were obtained from the Chang Gung Research Database (CGRD) between 1 January 2002 and 31 December 2018. All patients were followed up for 3 years or until the occurrence of death. Characteristics of CHM users and risk of all-cause mortality were assessed, and core CHMs with potential pharmacologic pathways were explored. Among 1618 patients, clinical features of CHM users (88) and nonusers (1530) were similar except for lower serum α-fetoprotein (AFP) and higher serum albumin levels in CHM users. CHM users had significantly higher 3 year overall survival rates (15.0% vs. 9.7%) and 3 year liver-specific survival rates (13.4% vs. 10.7%), about 3 months longer median survival time, and lower risk of all-cause mortality. Core CHMs were discovered from the prescriptions, including Hedyotis diffusa Willd combined with Scutellaria barbata D.Don, Salvia miltiorrhiza Bunge., Curcuma longa L., Rheum palmatum L., and Astragalus mongholicus Bunge. CHM use appears safe and is possibly beneficial for inoperable H-HCC patients; however, further clinical trials are still required.
Collapse
Affiliation(s)
- Shu-Ling Chen
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 333, Taiwan
| | - Chia-Ying Ho
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 333, Taiwan
| | - Wei-Chun Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chao-Wei Lee
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Yu-Chun Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei 112, Taiwan
| | - Jiun-Liang Chen
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-975366119; Fax: +886-3-3298995
| |
Collapse
|
32
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
33
|
Xie Y, Yan F, Wang X, Yu L, Yan H, Pu Q, Li W, Yang Z. Mechanisms and network pharmacological analysis of Yangyin Fuzheng Jiedu prescription in the treatment of hepatocellular carcinoma. Cancer Med 2022; 12:3237-3259. [PMID: 36043445 PMCID: PMC9939140 DOI: 10.1002/cam4.5064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To identify the key drugs of Yangyin Fuzheng Jiedu prescription (YFJP) and investigate their therapeutic effects against hepatocellular carcinoma (HCC) and the potential mechanism using network pharmacology. METHODS The H22 tumor-bearing mouse model was established. Thirty male BALB/c mice were divided randomly into five groups. The mice were orally treated with either disassembled prescriptions of YFJP or saline solution continuously for 14 days. The mice were weighed every 2 days during treatment and the appearance of tumors was observed by photographing. The tumor inhibition rate and the spleen and thymus indexes were calculated. Hematoxylin and eosin and immunohistochemical staining were performed to observe the histological changes and tumor-infiltrating lymphocytes. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. The proportion of CD8+ T cells and the expression of programmed cell death protein 1 (PD-1), T cell immunoglobulin domain and mucin domain-3 (Tim-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were analyzed using flow cytometry. The production of serum cytokines was detected using the Milliplex® MAP mouse high sensitivity T cell panel kit. The active components of the key drugs and HCC-related target proteins were obtained from the corresponding databases. The putative targets for HCC treatment were screened by target mapping, and potential active components were screened by constructing a component-target network. The interactive targets of putative targets were obtained from the STRING database to construct the protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed based on potential targets. The gene-gene inner and component-target-pathway networks were constructed and analyzed to screen the key targets. Western blotting was used to evaluate the protein expression of the key targets in the tumor-bearing mouse model. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS Among the three disassembled prescriptions of YFJP, the Fuzheng prescription (FZP) showed significant antitumor effects and inhibited weight loss during the treatment of H22 tumor-bearing mice. FZP increased the immune organ index and the levels of CD8+ and CD3+ T cells in the spleen and peripheral blood of H22 tumor-bearing mice. FZP also reduced the expression of PD-1, TIGIT, and TIM3 in CD8+ T cells and the production of IL-10, IL-4, IL-6, and IL-1β. Network pharmacology and experimental validation showed that the key targets of FZP in the treatment of HCC were PIK3CA, TP53, MAPK1, MAPK3, and EGFR. The therapeutic effect on HCC was evaluated based on HCC-related signaling pathways, including the PIK3-Akt signaling pathway, PD-L1 expression, and PD-1 checkpoint pathway in cancer. GO enrichment analysis indicated that FZP positively regulated the molecular functions of transferases and kinases on the cell surface through membrane raft, membrane microarea, and other cell components to inhibit cell death and programmed cell death. CONCLUSION FZP was found to be the key disassembled prescription of YFJP that exerted antitumor and immunoregulatory effects against HCC. FZP alleviated T cell exhaustion and improved the immunosuppressive microenvironment via HCC-related targets, pathways, and biological processes.
Collapse
Affiliation(s)
- Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Weihong Li
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingP.R. China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| |
Collapse
|
34
|
Relationship between Intestinal Microflora and Hepatocellular Cancer Based on Gut-Liver Axis Theory. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6533628. [PMID: 35965618 PMCID: PMC9359835 DOI: 10.1155/2022/6533628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 12/26/2022]
Abstract
The intestinal microflora is a bacterial group that lives in the human digestive tract and has a long-term interdependence with the host. Due to the close anatomical and functional relationship between the liver and the intestine, the intestinal flora affects liver metabolism via the intestinal-hepatic circulation, thereby playing an extremely important role in the pathological process of liver inflammation, chronic fibrosis, and liver cancer. In recent years, the rapid development of technologies in high-throughput sequencing and genomics has opened up possibilities for a broader and deeper understanding of the crosstalk between the intestinal flora and the occurrence and development of liver cancer. This review aims to summarize the mechanisms by which the gut microbiota changes the body's metabolism, through the gut-liver axis, thereby affecting the occurrence and development of primary liver cancer. In addition, the potential regulation of intestinal microflora in the treatment of liver cancer is discussed.
Collapse
|
35
|
Zheng Y, Jia R, Li J, Tian X, Qian Y. Curcumin- and resveratrol-co-loaded nanoparticles in synergistic treatment of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:339. [PMID: 35858935 PMCID: PMC9301856 DOI: 10.1186/s12951-022-01554-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Currently, systemic therapies for patients with advanced-stage hepatocellular carcinoma (HCC) rely mainly on systemic drugs. However, traditional systemic drugs have a high rate of serious adverse events, and the curative effects of some potential anticancer drugs, such as curcumin (CUR) and resveratrol (RSV), are less apparent due to their poor bioavailability. Therefore, it is urgent to develop a highly effective therapy to improve patient prognosis. Herein, an injectable HCC-targeted nanoparticle (NP) was designed to deliver CUR and RSV to hepatoma cells. RESULTS The molecular self-assembled NPs showed higher tumour retention through the enhanced permeability and retention (EPR) effect of the NPs and surface modification with the HCC-specific peptide moiety SP94 to effectively treat HCC. These HCC-targeted NPs led to a significant reduction in the drug dosage, delayed the rate of drug release and improved the bioavailability of the encapsulated drugs. The drug concentrations in the vicinity of the tumour increased, and a good therapeutic effect was observed without obvious side effects. CONCLUSIONS These SP94-mediated NPs allowed large amounts of antitumor drugs to accumulate in tumours, providing a novel strategy for innovative HCC therapy. This nanoplatform also offers an idea for exploring other potential chemotherapeutics.
Collapse
Affiliation(s)
- Yongshun Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ran Jia
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiaohe Tian
- Department of Radiology and National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), West China Hospital of Sichuan University, Chengdu, 610000, China. .,Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, School of Life Science, Anhui University, Hefei, 230000, China.
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
36
|
Mechanism of a Herbal Formula Associated with Prognosis and Immune Infiltration in LIHC: Transcriptomics Analysis and Molecular Dynamics Simulations. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6084321. [PMID: 35754689 PMCID: PMC9217603 DOI: 10.1155/2022/6084321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Background The aim of this study is to explore the interactions between effective monomers of herbal formulas and their therapeutic targets using systems biology approaches which may be a promising approach to unraveling their underlying mechanisms. Shentao Ruangan decoction (STRGD), which has been experimentally, clinically demonstrated to be effective in treating liver hepatocellular carcinoma (LIHC), was selected. Methods Bioactive ingredients and drug targets of STRGD were retrieved from the traditional Chinese medicine systems pharmacology database and analysis platform and BATMAN-TCM databases. LIHC-related differentially expressed genes (DEGs) and key modules were identified by a weighted gene coexpression network analysis using The Cancer Genome Atlas data. The Kaplan–Meier analysis was used to investigate the relationship between STRGD tumor targets and patients survival. The CIBERSORT deconvolution algorithm was used to analyze the correlation between STRGD tumor targets and infiltrating immune cells. Enrichment analysis was used to analyze biological functions. Interactions between STRGD compounds and LIHC-immune-related genes were investigated using molecular docking and MDS. Results We identified 24 STRGD tumor targets, which were found to be correlated with survival and the level of immune cell infiltration in LIHC patients. Immune infiltration, gene set enrichment, and Kyoto Encyclopedia of Genes and Genomes analyses highlighted the roles of T and B cell subsets, which were both related to activator protein 1 (AP1), in STRGD action. Docking studies and HPLC indicated that tanshinone IIA is the main compound of STRGD in LIHC treatment, and MDS showed that the potential LIHC-immune-related targets 1FOS and 1JUN firmly bind to tanshinone IIA. Conclusions The mechanisms of STRGD in improving the immune and survival status of LIHC patients include interactions between STRGD compounds and LIHC-immune-related targets. The findings of this study can guide research studies on the potential usefulness of tanshinone IIA in the development of drugs targeting 1JUN and 1FOS for the treatment of LIHC.
Collapse
|
37
|
Qin B, Zeng Z, Xu J, Shangwen J, Ye ZJ, Wang S, Wu Y, Peng G, Wang Q, Gu W, Tang Y. Emodin inhibits invasion and migration of hepatocellular carcinoma cells via regulating autophagy-mediated degradation of snail and β-catenin. BMC Cancer 2022; 22:671. [PMID: 35715752 PMCID: PMC9206273 DOI: 10.1186/s12885-022-09684-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Previous studies reported that emodin extracted from Rheum palmatum L. exerts antiproliferation and antimetastatic effects in a variety of human cancer types. However, the role of emodin in hepatocellular carcinoma (HCC) remain unknown. Methods EdU and colony formation assays were performed to evaluate the effects of emodin on proliferation. The mobility capacities of HCC treated with emodin were evaluated using wound healing assay. Transwell invasion and migration assays were performed to evaluate anti-migratory and anti-invasive effects of emodin on HCC. Annexin V-FITC/PI was performed to analyze the apoptosis. PI stain was performed to analyze cell cycle. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) induced by emodin in HCC. The impact of emodin on autophagic flux in HepG2 cells was examined by mCherry-GFP-LC3 analysis. Western blot was used to assess the protein expressions of epithelial-mesenchymal transition (EMT), autophagy, PI3K/AKT/mTOR and Wnt/β-catenin signaling pathway. Results We found that emodin inhibited the growth of HepG2 cells in a dose- and time-dependent manner. In addition, emodin inhibited cell proliferation, induced S and G2/M phases arrest, and promoted apoptosis in HepG2 cells. The migration and invasion of HepG2 cells were also suppressed by emodin. Enrichment analysis revealed that DEGs involved in cell adhesion, cancer metastasis and cell cycle arrest. Moreover, western bolt results show that emodin-induced autophagy promotes Snail and β-catenin degradation. We also found that blocking autophagic flux after emodin treatment caused EMT reversal. Furthermore, the PI3K agonist Y-P 740 significantly reversed the phosphorylation levels of GSK3β and mTOR. These results indicated that emodin induced autophagy and inhibited the EMT in part through suppression of the PI3K/AKT/mTOR and Wnt/β-catenin pathways. Conclusion Our study indicated that emodin inhibited cell metastasis in HCC via the crosstalk between autophagy and EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09684-0.
Collapse
Affiliation(s)
- Binyu Qin
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhili Zeng
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianliang Xu
- Hepatobilliary Surgery Department, The Third affiliated Hospital of Su Yat-sen University, Guangzhou, China
| | - Jing Shangwen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeng Jie Ye
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shutang Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanheng Wu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Gongfeng Peng
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Wenyi Gu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China. .,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, QLD, Brisbane, 4072, Australia.
| | - Ying Tang
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
38
|
Li K, Xiao K, Zhu S, Wang Y, Wang W. Chinese Herbal Medicine for Primary Liver Cancer Therapy: Perspectives and Challenges. Front Pharmacol 2022; 13:889799. [PMID: 35600861 PMCID: PMC9117702 DOI: 10.3389/fphar.2022.889799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common solid malignancies. However, PLC drug development has been slow, and first-line treatments are still needed; thus, studies exploring and developing alternative strategies for effective PLC treatment are urgently needed. Chinese herbal medicine (CHM) has long been applied in the clinic due to its advantages of low toxicity and targeting of multiple factors and pathways, and it has great potential for the development of novel natural drugs against PLC. Purpose: This review aims to provide an update on the pharmacological mechanisms of Chinese patent medicines (CPMs) and the latest CHM-derived compounds for the treatment of PLC and relevant clinical evaluations. Materials and Methods: A systematic search of English literature databases, Chinese literature, the Clinical Trials Registry Platform, and the Chinese Clinical Trial Registry for studies of CHMs for PLC treatment was performed. Results: In this review, we summarize the clinical trials and mechanisms of CPMs for PLC treatment that have entered the clinic with the approval of the Chinese medicine regulatory authority. These CPMs included Huaier granules, Ganfule granules, Fufang Banmao capsules, Jinlong capsules, Brucea javanica oil emulsions, and compound kushen injections. We also summarize the latest in vivo, in vitro, and clinical studies of CHM-derived compounds against PLC: icaritin and ginsenoside Rg3. Dilemmas facing the development of CHMs, such as drug toxicity and low oral availability, and future developments are also discussed. Conclusion: This review provides a deeper the understanding of CHMs as PLC treatments and provides ideas for the development of new natural drugs against PLC.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kunmin Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yong Wang, ; Wei Wang,
| | - Wei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Institute of Prescription and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provinvial Key Laboratory of TCM Pathogenesis and Prescriptions of Heart and Spleen Diseases, Guangzhou, China
- *Correspondence: Yong Wang, ; Wei Wang,
| |
Collapse
|
39
|
Li M, Xie F, Wang L, Zhu G, Qi LW, Jiang S. Celastrol: An Update on Its Hepatoprotective Properties and the Linked Molecular Mechanisms. Front Pharmacol 2022; 13:857956. [PMID: 35444532 PMCID: PMC9013942 DOI: 10.3389/fphar.2022.857956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The liver plays an important role in glucose and lipid homeostasis, drug metabolism, and bile synthesis. Metabolic disorder and inflammation synergistically contribute to the pathogenesis of numerous liver diseases, such as metabolic-associated fatty liver disease (MAFLD), liver injury, and liver cancer. Celastrol, a triterpene derived from Tripterygium wilfordii Hook.f., has been extensively studied in metabolic and inflammatory diseases during the last several decades. Here we comprehensively review the pharmacological activities and the underlying mechanisms of celastrol in the prevention and treatment of liver diseases including MAFLD, liver injury, and liver cancer. In addition, we also discuss the importance of novel methodologies and perspectives for the drug development of celastrol. Although celastrol has been claimed as a promising agent against several metabolic diseases, both preclinical and clinical studies are highly required to accelerate the clinical transformation of celastrol in treating different liver illness. It is foreseeable that celastrol-derived therapeutics is evolving in the field of liver ailments.
Collapse
Affiliation(s)
- Mengzhen Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Faren Xie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Fan Y, Xue H, Zheng H. Systemic Therapy for Hepatocellular Carcinoma: Current Updates and Outlook. J Hepatocell Carcinoma 2022; 9:233-263. [PMID: 35388357 PMCID: PMC8977221 DOI: 10.2147/jhc.s358082] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged the culprit of cancer-related mortality worldwide with its dismal prognosis climbing. In recent years, ground-breaking progress has been made in systemic therapy for HCC. Targeted therapy based on specific signaling molecules, including sorafenib, lenvatinib, regorafenib, cabozantinib, and ramucirumab, has been widely used for advanced HCC (aHCC). Immunotherapies such as pembrolizumab and nivolumab greatly improve the survival of aHCC patients. More recently, synergistic combination therapy has boosted first-line (atezolizumab in combination with bevacizumab) and second-line (ipilimumab in combination with nivolumab) therapeutic modalities for aHCC. This review aims to summarize recent updates of systemic therapy relying on the biological mechanisms of HCC, particularly highlighting the approved agents for aHCC. Adjuvant and neoadjuvant therapy, as well as a combination with locoregional therapies (LRTs), are also discussed. Additionally, we describe the promising effect of traditional Chinese medicine (TCM) as systemic therapy on HCC. In this setting, the challenges and future directions of systemic therapy for HCC are also explored.
Collapse
Affiliation(s)
- Yinjie Fan
- College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Hang Xue
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Huachuan Zheng
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
- Correspondence: Huachuan Zheng, Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China, Tel +86-0314-2279458, Fax +86-0314-2279458, Email
| |
Collapse
|
41
|
Shu R, Yang XZ, Wang Q, Hu XF, Liu WX, Zhang R, Zhang W, Wang C, Chen M. Essential oil from Saussurea costus inhibits proliferation and migration of Eca109 cells via mitochondrial apoptosis and STAT3 signaling. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.345517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
42
|
ZHOU Y, ZHAO D, JIANG X, AN W, GAO X, MA Q. Qilian Huaji decoction exerts an anti-cancer effect on hepatocellular carcinoma by upregulating miR-122. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.61620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yongsheng ZHOU
- Xi'an Jiaotong University, China; Inner Mongolia Medical University, China
| | - Dan ZHAO
- Fourth Hospital of Baotou City, China
| | | | - Wen AN
- Ulanqab Central Hospital, China
| | | | | |
Collapse
|
43
|
Wu YY, Xu YM, Lau ATY. Anti-Cancer and Medicinal Potentials of Moringa Isothiocyanate. Molecules 2021; 26:molecules26247512. [PMID: 34946594 PMCID: PMC8708952 DOI: 10.3390/molecules26247512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Moringa oleifera (M. oleifera), which belongs to the Moringaceae family, is a common herb, rich in plant compounds. It has a variety of bioactive compounds that can act as antioxidants, antibiotics, anti-inflammatory and anti-cancer agents, etc., which can be obtained in different body parts of M. oleifera. Isothiocyanates (ITCs) from M. oleifera are one class of these active substances that can inhibit cancer proliferation and promote cancer cell apoptosis through multiple signaling pathways, thus curbing cancer migration and metastasis, at the same time they have little adverse effect on normal cells. There are multiple variants of ITCs in M. oleifera, but the predominant phytochemical is 4-(α-L-rhamnosyloxy)benzyl isothiocyanate, also known as moringa isothiocyanate (MIC-1). Studies have shown that MIC-1 has the possibility to be used clinically for the treatment of diabetes, neurologic diseases, obesity, ulcerative colitis, and several cancer types. In this review, we focus on the molecular mechanisms underlying the anti-cancer and anti-chronic disease effects of MIC-1, current trends, and future direction of MIC-1 based treatment strategies. This review combines the relevant literature of the past 10 years, in order to provide more comprehensive information of MIC-1 and to fully exploit its potentiality in the clinical settings.
Collapse
|
44
|
Antitumoral and Anti-inflammatory Roles of Somatostatin and Its Analogs in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2021; 2021:1840069. [PMID: 34873567 PMCID: PMC8643256 DOI: 10.1155/2021/1840069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and affects about 8% of cirrhotic patients, with a recurrence rate of over 50%. There are numerous therapies available for the treatment of HCC, depending on cancer staging and condition of the patient. The complexity of the treatment is also justified by the unique pathogenesis of HCC that involves intricate processes such as chronic inflammation, fibrosis, and multiple molecular carcinogenesis events. During the last three decades, multiple in vivo and in vitro experiments have used somatostatin and its analogs (SSAs) to reduce the proliferative and metastatic potential of hepatoma cells by inducing their apoptosis and reducing angiogenesis and the inflammatory component of HCC. Most experiments have proven successful, revealing several different pathways and mechanisms corresponding to the aforementioned functions. Moreover, a correlation between specific effects and expression of somatostatin receptors (SSTRs) was observed in the studied cells. Clinical trials have tested either somatostatin or an analog, alone or in combination with other drugs, to explore the potential effects on HCC patients, in various stages of the disease. While the majority of these clinical trials exhibited minor to moderate success, some other studies were inconclusive or even reported negative outcomes. A complete evaluation of the efficacy of somatostatin and SSAs is still the matter of intense debate, and, if deemed useful, these substances may play a beneficial role in the management of HCC patients.
Collapse
|
45
|
Huxie Huaji Ointment Induced Apoptosis of Liver Cancer Cells In Vivo and In Vitro by Activating the Mitochondrial Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9922059. [PMID: 34335843 PMCID: PMC8298153 DOI: 10.1155/2021/9922059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 12/03/2022]
Abstract
Huxie Huaji (HXHJ) Ointment is a famous traditional Chinese medicinal prescription and is commonly used for the clinical treatment of hepatocellular carcinoma by boosting immunity and detoxification. However, the scientific evidence for the effect of HXHJ Ointment on hepatocellular carcinoma and the underlying molecular mechanism are lacking. The present study aimed to identify the effects of HXHJ Ointment on hepatocellular carcinoma in vitro and in vivo as well as investigating the mechanistic basis for the anticancer effect of HXHJ ointment. First, liquid chromatography-mass spectrometry was used to verify the composition of HXHJ Ointment and quality control. Second, in vitro, Cell Counting Kit (CCK8) cell viability assay and Hoechst 33342 staining assay were performed to explain the cell apoptosis. The protein levels of tumor suppressor protein (p53), B-cell lymphoma 2 gene (Bcl-2), cytochrome C (Cyt-C), and aspartate proteolytic enzyme-3 (caspase-3) were examined by immunofluorescence. Finally, in vivo, hematoxylin and eosin (H&E) staining was used to observe the pathological changes in hepatocellular carcinoma samples. Western blots and immunohistochemistry were used to detect the anticancer properties of HXHJ ointment. The results in vitro showed that 20% HXHJ Ointment serum could significantly inhibit HepG2 cell proliferation, increased tumor suppressor gene p53, downregulated antiapoptotic protein Bcl-2, promoted the release of mitochondrial Cyt-C, activated caspase-3, and induced HepG2 cell apoptosis. Furthermore, in vivo experiments showed that HXHJ Ointment could effectively inhibit tumor growth in nude mice xenotransplanted with HepG2 cells, changed the morphology of tumor cells, and regulated the expression of apoptosis-related protein pathway p53/Bcl-2/Cyt-C/caspase-3. HXHJ Ointment can significantly inhibit the development of hepatocellular carcinoma, and its mechanism may be related to the regulation of p53/Bcl-2/Cyt-C/caspase-3 signaling pathway to induce cell mitochondrial apoptosis.
Collapse
|
46
|
Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2021; 20:2789-2800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Mao-Hua Cai
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Cheng-Wu Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Zhi-Ming Hu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| |
Collapse
|
47
|
Shi ML, Chen YF, Wu WQ, Lai Y, Jin Q, Qiu WL, Yu DL, Li YZ, Liao HF. Luteolin inhibits the proliferation, adhesion, migration and invasion of choroidal melanoma cells in vitro. Exp Eye Res 2021; 210:108643. [PMID: 34058231 DOI: 10.1016/j.exer.2021.108643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Choroidal melanoma is a devastating disease that causes visual loss and a high mortality rate due to metastasis. Luteolin, a potential anticancer compound, is widely found in natural plants. The aim of this study was to evaluate the antiproliferative, antiadhesive, antimigratory and anti-invasive effects of luteolin on choroidal melanoma cells in vitro and to explore its potential mechanism. Cell counting kit-8 (CCK-8) assays, 5-ethynyl-2'-deoxyuridine (EdU) assays, Cell adhesion, migration, and invasion assays were performed to examine the inhibitory effects of luteolin on cell cell viability, proliferation, adhesion, migration and invasion capacities, respectively. Considering the correlation between Matrix metalloenzymes and tumor metastasis, Enzyme-linked immunosorbent assays (ELISAs) were used to assess matrix metalloproteases MMP-2 and MMP-9 secretion. Western blotting was performed to detect p-PI3K P85, Akt, and p-Akt protein expression. The cytoskeletal proteins vimentin were observed with cell immunofluorescence staining. Luteolin can inhibit OCM-1 cell proliferation, migration, invasion and adhesion and C918 cell proliferation, migration, and invasion through the PI3K/Akt signaling pathway. Therefore, Luteolin may have potential as a therapeutic medication for Choroidal melanoma.
Collapse
Affiliation(s)
- Meng-Lin Shi
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Province Blood Center, Nanchang, 330052, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China
| | - Yu-Fen Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Wei-Qi Wu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yao Lai
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Qi Jin
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Wan-Lu Qiu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Dong-Lian Yu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yi-Zhong Li
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Hong-Fei Liao
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
48
|
Interpreting the Molecular Mechanisms of Yinchenhao Decoction on Hepatocellular Carcinoma through Absorbed Components Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6616908. [PMID: 34104649 PMCID: PMC8159653 DOI: 10.1155/2021/6616908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
To investigate the mechanisms through which Yinchenhao decoction (YCHD) inhibits hepatocellular carcinoma (HCC), we analyzed YCHD ingredients absorbed into the bloodstream by using network pharmacology. We conducted a weighted gene coexpression network analysis on gene expression data collected from the Gene Expression Omnibus and The Cancer Genome Atlas databases to derive an HCC gene set; moreover, we used four online prediction system databases to predict the potential targets of YCHD ingredients absorbed into the bloodstream. We discovered that YCHD directly interfered with 17 HCC-related disease targets. Subsequent gene ontology enrichment analyses of these 17 disease targets revealed that YCHD exhibited effects through 17 biological processes, 7 molecular functions, and 9 cellular components. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated 14 pathways through which YCHD inhibits HCC. We observed similar trends in how the 17 small molecules interfered with the key target set. We surmised that YCHD inhibits HCC by regulating inflammatory and metabolic pathways. Network pharmacological analysis of YCHD ingredients absorbed into the bloodstream may provide new insights and serve as a new method for discovering the molecular mechanisms through which YCHD inhibits HCC.
Collapse
|
49
|
Benassi E, Fan H, Sun Q, Dukenbayev K, Wang Q, Shaimoldina A, Tassanbiyeva A, Nurtay L, Nurkesh A, Kutzhanova A, Mu C, Dautov A, Razbekova M, Kabylda A, Yang Q, Li Z, Amin A, Li X, Xie Y. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: the case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine. NANOSCALE ADVANCES 2021; 3:2222-2235. [PMID: 36133773 PMCID: PMC9417895 DOI: 10.1039/d0na00958j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/08/2021] [Indexed: 05/15/2023]
Abstract
Processed herbs have been widely used in eastern and western medicine; however, the mechanism of their medicinal effects has not yet been revealed. It is commonly believed that a central role is played by chemically active molecules produced by the herbs' metabolism. In this work, processed rhizoma polygonati (RP) and other herbal foods are shown to exhibit intrinsic phosphatase-like (PL) activity bounded with the formation of nano-size flower-shaped assembly. Via quantum mechanical calculations, an enzymatic mechanism is proposed. The enzymatic activity may be induced by the interaction between the sugar molecules distributed on the surface of the nanoassemblies and the phosphatase substrate via either a hydroxyl group or the deprotonated hydroxyl group. Meanwhile, the investigation was further extended by processing some fresh herbs and herbal food through a similar protocol, wherein other enzymatic activities (such as protease, and amylase) were observed. The PL activity exhibited by the processed natural herbs was found to be able to effectively inhibit cancer cell growth via phosphatase signaling, possibly by crosstalk with kinase signaling or DNA damage by either directly binding or unwinding of DNA, as evidenced by high-resolution atomic-force microscopy (HR-AFM). In this work, the neologism herbzyme (herb + enzyme) is proposed. This study represents the first case of scientific literature introducing this new term. Besides the well-known pharmacological properties of the natural molecules contained in herbs and herbal food, there exists an enzymatic/co-enzymatic activity attributed to the nanosized assemblies.
Collapse
Affiliation(s)
- Enrico Benassi
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 P. R. China
| | - Haiyan Fan
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Qinglei Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Kanat Dukenbayev
- School of Engineering and Digital Sciences, Nazarbayev University Nur-Sultan 010000 Republic of Kazakhstan
| | - Qian Wang
- Tai'an Xianlu Food Co Ltd Tai'an China
| | - Ainur Shaimoldina
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Aigerim Tassanbiyeva
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Lazzat Nurtay
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Ayan Nurkesh
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Aidana Kutzhanova
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Chenglin Mu
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Adilet Dautov
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Madina Razbekova
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Anar Kabylda
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Qing Yang
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| | - Ziye Li
- Huarun Taian Pharmacy Co. Ltd. Tai'an China
| | - Amr Amin
- Biology Department, United Arab Emirates University Al Ain 15551 United Arab Emirates
- The College, The University of Chicago Chicago IL 60637 USA
| | - Xugang Li
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Yingqiu Xie
- School of Sciences and Humanities, Nazarbayev University 53 Kabanbay Batyr Ave Nur-Sultan 010000 Republic of Kazakhstan +7 7172 694686
| |
Collapse
|
50
|
Sun J, Chen W, Wen B, Zhang M, Sun H, Yang X, Zhao W, La L, An H, Pang J, Gao L, He S. Biejiajian Pill Inhibits Carcinogenesis and Metastasis via the Akt/GSK-3β/Snail Signaling Pathway in Hepatocellular Carcinoma. Front Pharmacol 2021; 12:610158. [PMID: 33762939 PMCID: PMC7982731 DOI: 10.3389/fphar.2021.610158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most usual cancers globally. In China, Biejiajian pill (BJJP), Traditional Chinese Medicine clinical prescription, is broadly utilized for the prevention and therapy of HCC. However, the mechanisms by which BJJP exerts its effects on the prevention of tumor invasion and metastasis are still largely unknown. In this study, in vitro multiple hepatic cancer cell lines and an in vivo xenograft mice model were used to validate the preventive effects and molecular mechanisms of BJJP in HCC. We established that BJJP significantly repressed the proliferation, metastasis and infiltration of HCC cells. Furthermore, BJJP remarkably suppressed HCC cell migration, as well as invasion via epithelial-mesenchymal transition (EMT) by modulating Snail expression, which was associated with the repression of Akt/GSK-3β/Snail signaling axis activation. In vivo HCC xenograft results indicated that BJJP delayed HCC development and efficiently inhibited lung metastasis. Taken together, BJJP was shown to be an effective therapeutic agent against HCC through repression of the Akt/GSK-3β/Snail signaling cascade and EMT.
Collapse
Affiliation(s)
- Jialing Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weicong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Wen
- Department of Traditional Chinese Medicine, The Air Force Hospital of Southern Theater Command, Guangzhou, China
| | - Mingjia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuemei Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei La
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan An
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jie Pang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|