1
|
Guerrero-Pepinosa NY, Veloza LA, Sepúlveda-Arias JC. The n-Butanol Extract Obtained from the Inner Bark of Tabebuia rosea (Bertol.) DC, Specioside, and Catalposide Induce Leukemia Cell Apoptosis in the Presence of Apicidin. Molecules 2024; 29:3986. [PMID: 39274835 PMCID: PMC11396062 DOI: 10.3390/molecules29173986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
The cell signaling pathways involved in the antiproliferative activities of T. rosea inner bark remain unexplored. This study evaluated the apoptotic effects of two iridoids from the inner bark of T. rosea and apicidin on THP-1 cells. The cytotoxic effects of the extract and the pure compounds on THP-1 and Jurkat cells were also evaluated using the MTT assay. The apoptotic effect was determined by measuring the mitochondrial membrane potential. The expression of mRNA and MAPK kinase, Bax, and Bcl-2 proteins was detected by Western blotting and RT-qPCR, respectively. The extract and the compounds evaluated increased the percentage of apoptotic cells. Depolarization of the mitochondrial membrane was observed, and the number of cells in the G0/G1 phase increased. Catalposide and specioside significantly increased p38 protein expression, mostly in cells pretreated with apicidin. The p38 MAPK signaling pathway is at least one of the pathways by which the n-butanol extract obtained from Tabebuia rosea, catalposide, and specioside exerts its apoptotic effect on THP-1 cells, and this effect generates a response in the G0/G1 phase and subsequent cell death. In addition, there was depolarization of the mitochondrial membrane, an effect that was related to the participation of the proapoptotic protein Bax.
Collapse
Affiliation(s)
- Nancy Yadira Guerrero-Pepinosa
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
- Facultad de Ciencias Naturales, Exactas y de la Educación, Programa de Biología, Universidad del Cauca, Popayán 190001, Colombia
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
2
|
Miorando D, Steffler AM, Vecchia CAD, Simomura VL, Veloso JJ, Buzatto MV, Nunes RKS, Somensi LB, Gutiérrez MV, Melim LISH, Pontes FMM, Silva LM, Veselinova A, González-Sánchez L, Jambrina PG, Junior WAR. Gastroprotective role of a flavonoid-rich subfraction from Fridericia chica (Bonpl.) L. G. Lohmann: a medicinal plant used in the Amazon region. Inflammopharmacology 2024:10.1007/s10787-024-01544-6. [PMID: 39126568 DOI: 10.1007/s10787-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Fridericia chica is an Amazonian plant used to treat stomach disorders. However, the pharmacological activity of flavonoids in the extract has yet to be investigated. Therefore, we considered that a flavonoid-rich F. chica subfraction (FRS) has gastroprotective functions. For this, before the induction of gastric ulcers with ethanol or piroxicam, the rats received vehicle (water), omeprazole (30 mg/kg), or FRS (30 mg/kg), and the ulcer area was measured macro and microscopically, and the antisecretory action was investigated in pylorus-ligated rats. In addition, the roles of nitric oxide (NO) and nonprotein sulfhydryl compounds (NP-SH) in the gastroprotective effects of FRS were studied. FRS reduced ethanol- and piroxicam-induced ulcerations by 81% and 77%, respectively, as confirmed histologically. Antioxidant effects were observed for FRS through the maintenance of GSH and LPO levels, and the SOD and CAT activity similar to those found in the nonulcerated group. Moreover, FRS avoided the increase in MPO activity and TNF, IL-6, IL-4 and IL-10 levels. Moreover, mucin staining increased in ulcerated rats receiving FRS, and the pharmacological mechanism gastroprotective seems to involve the NO and NP-SH in addition to antisecretory actions. The chemical study by mass spectrometry confirmed the presence of flavonoids in FRS, and molecular docking studies have shown that these compounds interact with cyclooxygenase-1 and NO synthase. Furthermore, there was no indication that FRS had cytotoxic effects. Our results support the popular use of F. chica, and we conclude that the gastroprotection effect promoted by FRS can be attributed to the combined effect of the flavonoids.
Collapse
Affiliation(s)
- Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Amanda M Steffler
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Cristian A Dalla Vecchia
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Viviane L Simomura
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Jaqueline J Veloso
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Maike V Buzatto
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Ruan K S Nunes
- Postgraduate Program in Pharmaceutical Sciences, University of Vale Do Itajaí, Itajaí, SC, Brazil
| | - Lincon B Somensi
- Postgraduate Program in Development and Society, University of Alto Vale Do Rio Do Peixe, Caçador, SC, Brazil
| | - Max V Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
| | | | | | - Luisa M Silva
- Laboratory of TGI Pharmacology and Interactions, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anzhela Veselinova
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Lola González-Sánchez
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Pablo G Jambrina
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Walter A Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil.
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil.
| |
Collapse
|
3
|
de Freitas Gomes A, Batalha ADDSJ, de Castro Alves CE, Galvão de Azevedo R, Rodriguez Amado JR, Pereira de Souza T, Koolen HHF, da Silva FMA, Chaves FCM, Florentino Neto S, Boechat AL, Soares Pontes G. Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia. Pharmaceutics 2024; 16:828. [PMID: 38931948 PMCID: PMC11207419 DOI: 10.3390/pharmaceutics16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Nanocapsules provide selective delivery and increase the bioavailability of bioactive compounds. In this study, we examined the anticancer and immunomodulatory potential of Fridericia chica (crajiru) extract encapsulated in nanocapsules targeting myeloid leukemias. Nanocapsules containing crajiru (nanocapsules-CRJ) were prepared via interfacial polymer deposition and solvent displacement. Size and polydispersity were measured by dynamic light scattering. Biological assays were performed on leukemia cell lines HL60 and K562 and on non-cancerous Vero cells and human PBMC. The anticancer activity was evaluated using cytotoxicity and clonogenic assays, while the immunomodulatory activity was evaluated by measuring the levels of pro- and anti-inflammatory cytokines in PBMC supernatants treated with concentrations of nanocapsules-CRJ. Nanocapsules-CRJ exhibited significant cytotoxic activity against HL60 and K562 cells at concentrations ranging from 0.75 to 50 μg/mL, with the greatest reductions in cell viability observed at 50 μg/mL (p < 0.001 for HL60; p < 0.01 for K562), while not affecting non-cancerous Vero cells and human PBMCs. At concentrations of 25 μg/mL and 50 μg/mL, nanocapsules-CRJ reduced the formation of HL60 and K562 colonies by more than 90% (p < 0.0001). Additionally, at a concentration of 12 μg/mL, nanocapsules-CRJ induced the production of the cytokines IL-6 (p = 0.0002), IL-10 (p = 0.0005), IL-12 (p = 0.001), and TNF-α (p = 0.005), indicating their immunomodulatory potential. These findings suggest that nanocapsules-CRJ hold promise as a potential therapeutic agent with both cytotoxic and immunomodulatory properties.
Collapse
Affiliation(s)
- Alice de Freitas Gomes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Adriane Dâmares de Souza Jorge Batalha
- Laboratory of Innovative Therapies, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Carlos Eduardo de Castro Alves
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Renata Galvão de Azevedo
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Jesus Rafael Rodriguez Amado
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Tatiane Pereira de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
| | | | | | | | - Serafim Florentino Neto
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Antônio Luiz Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Gemilson Soares Pontes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| |
Collapse
|
4
|
Liu M, Gao H, Miao J, Zhang Z, Zheng L, Li F, Zhou S, Zhang Z, Li S, Liu H, Sun J. Helicobacter pylori infection in humans and phytotherapy, probiotics, and emerging therapeutic interventions: a review. Front Microbiol 2024; 14:1330029. [PMID: 38268702 PMCID: PMC10806011 DOI: 10.3389/fmicb.2023.1330029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
The global prevalence of Helicobacter pylori (H. pylori) infection remains high, indicating a persistent presence of this pathogenic bacterium capable of infecting humans. This review summarizes the population demographics, transmission routes, as well as conventional and novel therapeutic approaches for H. pylori infection. The prevalence of H. pylori infection exceeds 30% in numerous countries worldwide and can be transmitted through interpersonal and zoonotic routes. Cytotoxin-related gene A (CagA) and vacuolar cytotoxin A (VacA) are the main virulence factors of H. pylori, contributing to its steep global infection rate. Preventative measures should be taken from people's living habits and dietary factors to reduce H. pylori infection. Phytotherapy, probiotics therapies and some emerging therapies have emerged as alternative treatments for H. pylori infection, addressing the issue of elevated antibiotic resistance rates. Plant extracts primarily target urease activity and adhesion activity to treat H. pylori, while probiotics prevent H. pylori infection through both immune and non-immune pathways. In the future, the primary research focus will be on combining multiple treatment methods to effectively eradicate H. pylori infection.
Collapse
Affiliation(s)
- Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jinlai Miao
- First Institute of Oceanography Ministry of Natural Resources, Qingdao, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical and Electronic Engineering, Qingdao University, Qingdao, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Gurgel RS, de Melo Pereira DÍ, Garcia AVF, Fernandes de Souza AT, Mendes da Silva T, de Andrade CP, Lima da Silva W, Nunez CV, Fantin C, de Lima Procópio RE, Albuquerque PM. Antimicrobial and Antioxidant Activities of Endophytic Fungi Associated with Arrabidaea chica (Bignoniaceae). J Fungi (Basel) 2023; 9:864. [PMID: 37623634 PMCID: PMC10455555 DOI: 10.3390/jof9080864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
The endophytic fungal community of the Amazonian medicinal plant Arrabidaea chica (Bignoniaceae) was evaluated based on the hypothesis that microbial communities associated with plant species in the Amazon region may produce metabolites with interesting bioactive properties. Therefore, the antimicrobial and antioxidant activities of the fungal extracts were investigated. A total of 107 endophytic fungi were grown in liquid medium and the metabolites were extracted with ethyl acetate. In the screening of fungal extracts for antimicrobial activity, the fungus identified as Botryosphaeria mamane CF2-13 was the most promising, with activity against E. coli, S. epidermidis, P. mirabilis, B. subtilis, S. marcescens, K. pneumoniae, S. enterica, A. brasiliensis, C. albicans, C. tropicalis and, especially, against S. aureus and C. parapsilosis (MIC = 0.312 mg/mL). Screening for antioxidant potential using the DPPH elimination assay showed that the Colletotrichum sp. CG1-7 endophyte extract exhibited potential activity with an EC50 of 11 µg/mL, which is equivalent to quercetin (8 µg/mL). The FRAP method confirmed the antioxidant potential of the fungal extracts. The presence of phenolic compounds and flavonoids in the active extracts was confirmed using TLC. These results indicate that two of the fungi isolated from A. chica exhibit significant antimicrobial and antioxidant potential.
Collapse
Affiliation(s)
- Raiana Silveira Gurgel
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Dorothy Ívila de Melo Pereira
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Ana Vyktória França Garcia
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Anne Terezinha Fernandes de Souza
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
| | - Thaysa Mendes da Silva
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Cleudiane Pereira de Andrade
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Weison Lima da Silva
- Bioprospection and Biotechnology Laboratory, National Institute of Amazonian Research, Manaus 69067-375, Brazil;
| | - Cecilia Veronica Nunez
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
- Bioprospection and Biotechnology Laboratory, National Institute of Amazonian Research, Manaus 69067-375, Brazil;
| | - Cleiton Fantin
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
- Multicentric Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil
| | - Rudi Emerson de Lima Procópio
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
| | - Patrícia Melchionna Albuquerque
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
- Multicentric Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil
| |
Collapse
|
7
|
Figueiredo FDF, Damazo AS, Arunachalam K, Silva MJD, Pavan E, Lima JCDS, Martins DTDO. Evaluation of the gastroprotective and ulcer healing properties by Fridericia chica (Bonpl.) L.G. Lohmann hydroethanolic extract of leaves. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116338. [PMID: 36870462 DOI: 10.1016/j.jep.2023.116338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fridericia chica (Bonpl.) L.G. Lohmann (Bignoniaceae), is a climber native to Brazil, found in all Brazilian biomes. It is mostly known in Brazil as "carajiru," and home medicines made from the leaves have been used to cure disorders including stomach ulcers and other gastrointestinal disorders. AIM OF THE STUDY The objective of the study was to investigate the F. chica hydroethanolic extract of leaves (HEFc) preventative and curative antiulcer gastrointestinal efficacy as well as the mechanisms of action using in vivo rodent models. MATERIALS AND METHODS F. chica was collected in the municipality of Juína, Mato Grosso, and its leaves were used to prepare the extract by maceration technique (70% hydroethanol in the 1:10 ratio, w/v) to obtain the HEFc. The chromatographic analysis of HEFc was carried out by High Performance Liquid Chromatography-Photo Diode Array-Electrospray Ionization-Mass Spectrometry (HPLC-PDA-ESI-MS)- LCQ Fleet™ system. To determine the potential antiulcer potential of HEFc (1, 5 and 20 mg/kg, p.o.), the gastroprotective activity was assessed in various animal models of stomach ulcers caused by acidified ethanol, water constraint stress, indomethacin, (acute), and acid acetic (chronic). Additionally, the prokinetic properties of the HEFC were assessed in mice. The gastroprotective underlying mechanisms were evaluated by the histopathological analysis and determination of gastric secretion (volume, free and total acidity), gastric barrier mucus, activation of PGs, NO, K +ATP channels, α2-adrenoceptor, antioxidant activity (GSH, MPO and MDA), NO and mucosal cytokines (TNF-α, IL-1β, and IL-10) levels. RESULTS The chemical composition of HEFc was analyzed and apigenin, scutellarin, and carajurone were identified. HEFc (1, 5 and 20 mg/kg) showed effect against acute ulcers induced by HCl/EtOH with a reduction in the ulcerated area of 64.41% (p < 0.001), 54.23% (p < 0.01), 38.71% (p < 0.01), respectively. In the indomethacin experiment, there was no change in the doses tested, whereas in the water immersion restraint stress ulcer there was a reduction of lesions at doses of 1, 5, and 20 mg/kg by 80.34% (p < 0.001), 68.46% (p < 0.01) and 52.04% (p < 0.01). HEFc increased the mucus production at doses of 1 and 20 mg/kg in 28.14% (p < 0.05) and 38.36% (p < 0.01), respectively. In the pyloric ligation-induced model of gastric ulceration, the HEFc decreased the total acidity in all doses by 54.23%, 65.08%, and 44.40% (p < 0.05) and gastric secretory volume in 38.47% at dose of 1 mg/kg (p < 0,05) and increased the free acidity at the dose of 5 mg/kg by 11.86% (p < 0.05). The administration of EHFc (1 mg/kg) showed a gastroprotective effect possibly by stimulating the release of prostaglandins and activating K+ATP channels and α2-adrenoreceptors. Also, the gastroprotective effect of HEFc involved an increase in CAT and GSH activities, and a reduction in MPO activity and MDA levels. In the chronic gastric ulcer model, the HEFc (1, 5 and 20 mg/kg) decreased the ulcerated area significantly (p < 0.001) at all doses by 71.37%, 91.00%, and 93.46%, respectively. In the histological analysis, HEFc promoted the healing of gastric lesions by stimulating the formation of granulation tissue and consequently epithelialization. On the other hand, regarding the effect of HEFc on gastric emptying and intestinal transit, it was observed that the extract did not alter gastric emptying, but there was an increase in intestinal transit at the dose of 1 mg/kg (p < 0.01). CONCLUSION These outcomes confirmed the advantages of Fridericia chica leaves for the treatment of stomach ulcers, which are well-known. HEFc was discovered to have antiulcer characteristics through multitarget pathways, which might be related to an increase in stomach defense mechanisms and a decrease in defensive factor. HEFc can be regarded as a potential new antiulcer herbal remedy because of its antiulcer properties, which may be attributed to the mixture of flavonoids, apigenin, scutellarin and carajurone.
Collapse
Affiliation(s)
- Fabiana de Freitas Figueiredo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Amilcar Sabino Damazo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Área de Histologia e Biologia Celular, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Karuppusamy Arunachalam
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento da Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Marcelo José Dias Silva
- Universidade Federal de Alfenas (UNIFAL-MG), Laboratório de Plantas Medicinais e Fitoterápicos, Rua Gabriel Monteiro da Silva, 700. Centro Alfenas, MG, Brazil.
| | - Eduarda Pavan
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Domingos Tabajara de Oliveira Martins
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| |
Collapse
|
8
|
Frański R, Beszterda-Buszczak M. Comment on Villalva et al. Antioxidant, Anti-Inflammatory, and Antibacterial Properties of an Achillea millefolium L. Extract and Its Fractions Obtained by Supercritical Anti-Solvent Fractionation against Helicobacter pylori. Antioxidants 2022, 11, 1849. Antioxidants (Basel) 2023; 12:1226. [PMID: 37371956 DOI: 10.3390/antiox12061226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Revised: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Villalva et al. evaluated the potential utility of an Achillea millefolium (yarrow) extract in the control of H. pylori infection. The agar-well diffusions bioassay was applied to determine the antimicrobial activity of yarrow extracts. The supercritical anti-solvent fractionation process of yarrow extract was made to give two different fractions with polar phenolic compounds and monoterpenes and sesquiterpenes, respectively. Phenolic compounds were identified by HPLC-ESIMS by using the accurate masses of [M-H]- ions and the characteristic product ions. However, some of the reported product ions seem to be disputable, as described below.
Collapse
Affiliation(s)
- Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Monika Beszterda-Buszczak
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Mazowiecka 48, 60-623 Poznań, Poland
| |
Collapse
|
9
|
Alvarez-Ortega N, Caballero-Gallardo K, Juan C, Juan-Garcia A, Olivero-Verbel J. Cytoprotective, Antiproliferative, and Anti-Oxidant Potential of the Hydroethanolic Extract of Fridericia chica Leaves on Human Cancer Cell Lines Exposed to α- and β-Zearalenol. Toxins (Basel) 2023; 15:36. [PMID: 36668856 PMCID: PMC9864583 DOI: 10.3390/toxins15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 01/22/2023] Open
Abstract
Fridericia chica (Bignoniaceae) is a Colombian Caribbean plant with numerous health benefits, including properties such as wound healing, immune system stimulation, and antioxidant capacity, among others. Mycotoxins alpha-zearalenol (α-ZEL) and beta-zearalenol (β-ZEL) are phase I metabolites of zearalenone, a natural product involved in endocrine disruption and cell proliferation processes. This study aimed to investigate the cytotoxic potential of the hydroethanolic extract of F. chica leaves (HEFc) and determine their protective effects against proliferation induced by α-ZEL and β-ZEL on human hepatoma HepG2, lung cancer Calu-1, and primary normal human epidermal keratinocytes, neonatal (HEKn). The cytotoxicity of HEFc was measured in a range from 4 to 1000 µg/mL and from 0.4 to 100 μM for both α-ZEL and β-ZEL. Cell production of intracellular ROS was monitored using the H2-DCFDA probe. The cells exposed to HEFc presented IC50 of 128, 249, and 602 µg/mL for the HepG2, Calu-1, and HEKn cells, respectively. A greater selectivity was seen in HepG2 cells [selectivity index (SI) = 3.5] than in Calu-1 cells (SI = 2.4). Cells treated with mycotoxins remained viable during the first day, and cell proliferation increased at low tested concentrations (0.4-6.3 µM) in all three cell lines. However, after 48 h treatment, cells exposed to 50 and 100 µM of α-ZEL and β-ZEL displayed decreased viability. HEFc at 16 µg/mL was able to give some protection against cytotoxicity induced by high concentrations of β-ZEL in HepG2, reducing also cell proliferation elicited at low levels of α-ZEL and β-ZEL. ROS production was not observed in cells treated with this HEFc concentration; however, it prevented ROS formation induced by treatment with 50 µM α-ZEL or β-ZEL. In summary, HEFc isolated from plants grown in northern Colombia displayed promising results against cell proliferation and oxidative stress caused by mycotoxins.
Collapse
Affiliation(s)
- Neda Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia (Spain)—Avda, Vicent Andrés Estellés, s/n. Burjassot, 46100 València, Spain
| | - Ana Juan-Garcia
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia (Spain)—Avda, Vicent Andrés Estellés, s/n. Burjassot, 46100 València, Spain
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
10
|
Unusual dimeric flavonoids from Fridericia prancei (Bignoniaceae) and their taxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
11
|
de Siqueira FC, Barbosa-Carvalho APP, Costa Leitão DDST, Furtado KF, Chagas-Junior GCA, Lopes AS, Chisté RC. Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance. Antioxidants (Basel) 2022; 11:1909. [PMID: 36290636 PMCID: PMC9598737 DOI: 10.3390/antiox11101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Arrabidaea chica, a medicinal plant found in the Amazon rainforest, is a promising source of bioactive compounds which can be used to inhibit oxidative damage in both food and biological systems. In this study, the in vitro scavenging capacity of characterized extracts of A. chica leaves, obtained with green solvents of different polarities [water, ethanol, and ethanol/water (1:1, v/v)] through ultrasound-assisted extraction, was investigated against reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide anion radicals (O2•-), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and peroxynitrite anion (ONOO-). The extract obtained with ethanol-water presented about three times more phenolic compound contents (11.8 mg/g) than ethanol and water extracts (3.8 and 3.6 mg/g, respectively), with scutellarein being the major compound (6.76 mg/g). All extracts showed high scavenging efficiency against the tested ROS and RNS, in a concentration-dependent manner with low IC50 values, and the ethanol-water extract was the most effective one. In addition, all the extracts were five times more efficient against ROO• than Trolox. Therefore, the extracts from A. chica leaves exhibited high promising antioxidant potential to be used against oxidative damage in food and physiological systems.
Collapse
Affiliation(s)
- Francilia Campos de Siqueira
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | | | | | - Kalebe Ferreira Furtado
- School of Biotechnology, Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | | | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- School of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- School of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Renan Campos Chisté, Faculdade de Engenharia de Alimentos (FEA), Instituto de Tecnologia (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01-Guamá, Belém 66075-110, Brazil
| |
Collapse
|
12
|
Batalha ADDSJ, Souza DCDM, Ubiera RD, Chaves FCM, Monteiro WM, da Silva FMA, Koolen HHF, Boechat AL, Sartim MA. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022; 12:biom12091208. [PMID: 36139047 PMCID: PMC9496332 DOI: 10.3390/biom12091208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the species Fridericia chica (Bonpl.) L. G. Lohmann (Bignoniaceae), which are widely distributed in Brazil and named crajiru in the state of Amazonas, are known in folk medicine as a traditional medicine in the form of a tea for the treatment of intestinal colic, diarrhea, and anemia, among other diseases. The chemical analysis of extracts of the leaves has identified phenolic compounds, a class of secondary metabolites that provide defense for plants and benefits to the health of humans. Several studies have shown the therapeutic efficacy of F. chica extracts, with antitumor, antiviral, wound healing, anti-inflammatory, and antioxidant activities being among the therapeutic applications already proven. The healing action of F. chica leaf extract has been demonstrated in several experimental models, and shows the ability to favor the proliferation of fibroblasts, which is essential for tissue repair. The anti-inflammatory activity of F. chica has been clearly demonstrated by several authors, who suggest that it is related to the presence of 3-deoxyanthocyanidins, which is capable of inhibiting pro-inflammatory pathways such as the kappa B (NF-kB) nuclear transcription factor pathway. Another important effect attributed to this species is the antioxidant effect, attributed to phenolic compounds interrupting chain reactions caused by free radicals and donating hydrogen atoms or electrons. In conclusion, the species Fridericia chica has great therapeutic potential, which is detailed in this paper with the objective of encouraging new research and promoting the sum of efforts for the inclusion of herbal medicines in health systems around the world.
Collapse
Affiliation(s)
| | - Damy Caroline de Melo Souza
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rosmery Duran Ubiera
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | | | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Tropical Medicine Foundation Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | | | - Hector Henrique Ferreira Koolen
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research Group in Metabolomics and Mass Spectrometry, Amazonas State University, Manaus 690065-130, Brazil
| | - Antônio Luiz Boechat
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Laboratory of Innovative Therapies, Department of Parasitology, Amazonas State University—UEA, Manaus 69080-900, Brazil
| | - Marco Aurélio Sartim
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Brazil
- Correspondence:
| |
Collapse
|
13
|
Cuenca-León K, Pacheco-Quito EM, Granda-Granda Y, Vélez-León E, Zarzuelo-Castañeda A. Phytotherapy: A Solution to Decrease Antifungal Resistance in the Dental Field. Biomolecules 2022; 12:789. [PMID: 35740914 PMCID: PMC9220786 DOI: 10.3390/biom12060789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The pathologies produced by fungi in the oral cavity in recent decades have become a health problem, with factors such as an imbalance of the local microbiota being the cause for their propagation. Conventional antifungal treatments, instead of being beneficial, have generated alterations that have led to antifungal resistance. The aim of this study was to investigate and describe phytotherapy resources as a possible solution to oral antifungal resistance. A bibliographic search was carried out on platforms such as PubMed, Scopus, ScienceDirect, Web of Science, and Google scholar. A total of 248 scientific articles were obtained, of which 108 met the inclusion criteria. Microorganisms of fungal origin currently show resistance to the different antifungals of conventional use, which is undoubtedly altering the oral health of human beings, but there are new therapeutic possibilities such as the active principles of various natural species.
Collapse
Affiliation(s)
- Katherine Cuenca-León
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador; (E.-M.P.-Q.); (Y.G.-G.); (E.V.-L.)
- Research Group: Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
- Pharmaceutical Sciences Department, University of Salamanca, 37007 Salamanca, Spain;
| | - Edisson-Mauricio Pacheco-Quito
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador; (E.-M.P.-Q.); (Y.G.-G.); (E.V.-L.)
- Research Group: Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| | - Yanela Granda-Granda
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador; (E.-M.P.-Q.); (Y.G.-G.); (E.V.-L.)
| | - Eleonor Vélez-León
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador; (E.-M.P.-Q.); (Y.G.-G.); (E.V.-L.)
- Research Group: Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| | | |
Collapse
|
14
|
A Review of the Phytochemistry and Pharmacological Properties of the Genus Arrabidaea. Pharmaceuticals (Basel) 2022; 15:ph15060658. [PMID: 35745577 PMCID: PMC9227117 DOI: 10.3390/ph15060658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Arrabidaea, consisting of ~170 species, belongs to the family Bignoniaceae, distributed around the Neotropics and temperate zone. The center of diversity of the family is in Brazil, where 56 genera and about 340 species exist. Most species of the genus Arrabidaea are traditionally utilized as diuretics and antiseptics, as well as for treating intestinal colic, diarrhea, kidney stones, rheumatoid arthritis, wounds, and enterocolitis. The genus is chemically diverse with different substance classes; most of them are triterpenes, phenolic acids, and flavonoids, and they exhibit valuable pharmacological properties, such as antitumor, antioxidant, leishmanicidal, trypanocidal, anti-inflammatory, and healing properties. This review presents information on the chemical constituents isolated from seven Arrabidaea species, and the pharmacological activities of the extracts, fractions and pure substances isolated since 1994, obtained from electronic databases. The various constituents present in the different species of this genus demonstrate a wide pharmacological potential for the development of new therapeutic agents, however its potential has been underestimated.
Collapse
|
15
|
Silva-Silva JV, Moragas-Tellis CJ, Chagas MSS, Souza PVR, Moreira DL, Hardoim DJ, Taniwaki NN, Costa VFA, Bertho AL, Brondani D, Zapp E, de Oliveira AS, Calabrese KS, Behrens MD, Almeida-Souza F. Carajurin Induces Apoptosis in Leishmania amazonensis Promastigotes through Reactive Oxygen Species Production and Mitochondrial Dysfunction. Pharmaceuticals (Basel) 2022; 15:ph15030331. [PMID: 35337130 PMCID: PMC8948652 DOI: 10.3390/ph15030331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Carajurin is the main constituent of Arrabidaea chica species with reported anti-Leishmania activity. However, its mechanism of action has not been described. This study investigated the mechanisms of action of carajurin against promastigote forms of Leishmania amazonensis. Carajurin was effective against promastigotes with IC50 of 7.96 ± 1.23 μg.mL−1 (26.4 µM), and the cytotoxic concentration for peritoneal macrophages was 258.2 ± 1.20 μg.mL−1 (856.9 µM) after 24 h of treatment. Ultrastructural evaluation highlighted pronounced swelling of the kinetoplast with loss of electron-density in L. amazonensis promastigotes induced by carajurin treatment. It was observed that carajurin leads to a decrease in the mitochondrial membrane potential (p = 0.0286), an increase in reactive oxygen species production (p = 0.0286), and cell death by late apoptosis (p = 0.0095) in parasites. Pretreatment with the antioxidant NAC prevented ROS production and significantly reduced carajurin-induced cell death. The electrochemical and density functional theory (DFT) data contributed to support the molecular mechanism of action of carajurin associated with the ROS generation, for which it is possible to observe a correlation between the LUMO energy and the electroactivity of carajurin in the presence of molecular oxygen. All these results suggest that carajurin targets the mitochondria in L. amazonensis. In addition, when assessed for its drug-likeness, carajurin follows Lipinski’’s rule of five, and the Ghose, Veber, Egan, and Muegge criteria.
Collapse
Affiliation(s)
- João Victor Silva-Silva
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.V.S.-S.); (D.J.H.); (F.A.-S.)
| | - Carla J. Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (C.J.M.-T.); (M.S.S.C.); (P.V.R.S.); (D.L.M.); (M.D.B.)
| | - Maria S. S. Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (C.J.M.-T.); (M.S.S.C.); (P.V.R.S.); (D.L.M.); (M.D.B.)
| | - Paulo Victor R. Souza
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (C.J.M.-T.); (M.S.S.C.); (P.V.R.S.); (D.L.M.); (M.D.B.)
- Postgraduate Program in Translational Research in Drugs and Medicines, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Davyson L. Moreira
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (C.J.M.-T.); (M.S.S.C.); (P.V.R.S.); (D.L.M.); (M.D.B.)
| | - Daiana J. Hardoim
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.V.S.-S.); (D.J.H.); (F.A.-S.)
| | - Noemi N. Taniwaki
- Electron Microscopy Nucleus, Adolfo Lutz Institute, Sao Paulo 01246-000, Brazil;
| | - Vanessa F. A. Costa
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (V.F.A.C.); (A.L.B.)
| | - Alvaro L. Bertho
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (V.F.A.C.); (A.L.B.)
- Flow Cytometry Technological Platform, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Daniela Brondani
- Research Group on Medicinal and Biological Chemistry (GPQMedBio), Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau 89036-002, Brazil; (D.B.); (E.Z.); (A.S.d.O.)
| | - Eduardo Zapp
- Research Group on Medicinal and Biological Chemistry (GPQMedBio), Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau 89036-002, Brazil; (D.B.); (E.Z.); (A.S.d.O.)
| | - Aldo Sena de Oliveira
- Research Group on Medicinal and Biological Chemistry (GPQMedBio), Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau 89036-002, Brazil; (D.B.); (E.Z.); (A.S.d.O.)
| | - Kátia S. Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.V.S.-S.); (D.J.H.); (F.A.-S.)
- Correspondence: ; Tel.: +55-21-2562-1879
| | - Maria D. Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (C.J.M.-T.); (M.S.S.C.); (P.V.R.S.); (D.L.M.); (M.D.B.)
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.V.S.-S.); (D.J.H.); (F.A.-S.)
- Postgraduate Program in Animal Science, State University of Maranhão, Sao Luis 65055-310, Brazil
| |
Collapse
|
16
|
Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol Rep 2022; 9:445-469. [PMID: 35340621 PMCID: PMC8943219 DOI: 10.1016/j.toxrep.2022.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2020] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Flavonoids -a class of low molecular weight secondary metabolites- are ubiquitous and cornucopia throughout the plant kingdom. Structurally, the main structure consists of C6-C3-C6 rings with different substitution patterns so that many sub-classes are obtained, for example: flavonols, flavonolignans, flavonoid glycosides, flavans, anthocyanidins, aurones, anthocyanidins, flavones, neoflavonoids, chalcones, isoflavones, flavones and flavanones. Flavonoids are evaluated to have drug like nature since they possess different therapeutic activities, and can act as cardioprotective, antiviral, antidiabetic, anti-inflammatory, antibacterial, anticancer, and also work against Alzheimer's disease and others. However, information on the relationship between their structure and biological activity is scarce. Therefore, the present review tries to summarize all the therapeutic activities of flavonoids, their mechanisms of action and the structure activity relationship. Latest updated ethnopharmacological review of the therapeutic effects of flavonoids. Flavonoids are attracting attention because of their therapeutic properties. Flavonoids are valuable candidates for drug development against many dangerous diseases. This overview summarizes the most important therapeutic effect and mechanism of action of flavonoids. General knowledge about the structure activity relationship of flavonoids is summarized. Substitution of chemical groups in the structure of flavonoids can significantly change their biological and chemical properties. The chemical properties of the basic flavonoid structure should be considered in a drug-based structural program.
Collapse
|
17
|
Antifungal effect of hydroethanolic extract of Fridericia chica (Bonpl.) L. G. Lohmann leaves and its therapeutic use in a vulvovaginal candidosis model. J Mycol Med 2022; 32:101255. [DOI: 10.1016/j.mycmed.2022.101255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
|
18
|
Torres CA, Zamora CMP, Nuñez MB, Isla MI, Gonzalez AM, Zampini IC. Evaluation of the antibacterial synergism of two plant extracts belonging to Bignoniaceae family and development of a topical formulation. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
|
19
|
Protective Effects of the Hydroethanolic Extract of Fridericia chica on Undifferentiated Human Neuroblastoma Cells Exposed to α-Zearalenol (α-ZEL) and β-Zearalenol (β-ZEL). Toxins (Basel) 2021; 13:toxins13110748. [PMID: 34822532 PMCID: PMC8618744 DOI: 10.3390/toxins13110748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fridericia chica (Bignoniaceae) is a traditional medicinal plant. The aim of this research was to determine the protective effects of the hydroethanolic extract from the F. chica leaves (HEFc) against the cytotoxicity of zearalenone (α-ZEL) and β-ZEL on SH-SY5Y cells. Free radical scavenging activity of HEFc was evaluated using the DPPH method. The cytotoxicity of both zearalenone metabolites and HEFc was examined using MTT test, as was the cytoprotective effects of the HEFc on cells treated with these mycotoxins. The chemical composition of HEFc was determined using UPLC-QTOF-MS/MS. HEFc elicited good DPPH radical scavenging activity following a concentration-dependent relationship. Cells exposed to α-ZEL exhibited a viability ˂50% after 48 h of treatment (25 and 50 µM), while those exposed to β-ZEL showed viability ˂50% (100 µM) and ˂25% (25-100 µM) after 24 and 48 h of exposure, respectively. HEFc showed a significant increase in cell viability after exposure to α-ZEL (25 and 50 µM) and β-ZEL (6-100 µM) (p < 0.05). UPLC-QTOF-MS/MS analyses allowed the identification of 10 phytochemical components in the HEFc. In short, the hydroethanolic extract of F. chica grown in Colombian Caribbean can protect against the effects of mycotoxins and it is a valuable source of compounds with antioxidant properties.
Collapse
|
20
|
Silva-Silva JV, Moragas-Tellis CJ, Chagas MSS, Souza PVR, Moreira DL, de Souza CSF, Teixeira KF, Cenci AR, de Oliveira AS, Almeida-Souza F, Behrens MD, Calabrese KS. Carajurin: a anthocyanidin from Arrabidaea chica as a potential biological marker of antileishmanial activity. Biomed Pharmacother 2021; 141:111910. [PMID: 34323692 DOI: 10.1016/j.biopha.2021.111910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis is a group of neglected tropical diseases whose treatment with antimonials bears limitations and has changed little in over 80 years. Medicinal plants have been evaluated as a therapeutic alternative for leishmaniasis. Arrabidaea chica is popularly used as a wound healing and antiparasitic agent, especially as leishmanicidal agent. This study examined the leishmanicidal activity of a crude extract (ACCE), an anthocyanidin-rich fraction (ACAF), and three isolated anthocyanidins from A. chica: carajurin, 3'-hydroxy-carajurone, and carajurone. We evaluated the antileishmanial activity against promastigote and intracellular amastigote forms of Leishmania amazonensis and determined cytotoxicity in BALB/c peritoneal macrophages, as well as nitrite quantification, using the Griess method. Molecular docking was carried out to evaluate interactions of carajurin at the nitric oxide synthase enzyme. All compounds were active against promastigotes after 72 h, with IC50 values of 101.5 ± 0.06 μg/mL for ACCE and 4.976 ± 1.09 μg/mL for ACAF. Anthocyanidins carajurin, 3'-hydroxy-carajurone, and carajurone had IC50 values of 3.66 ± 1.16, 22.70 ± 1.20, and 28.28 ± 0.07 μg/mL, respectively. The cytotoxicity assay after 72 h showed results ranging from 9.640 to 66.74 µg/mL for anthocyanidins. ACAF and carajurin showed selectivity against intracellular amastigote forms (SI> 10), with low cytotoxicity within 24 h, a statistically significant reduction in all infection parameters, and induced nitrite production. Molecular docking studies were developed to understand a possible mechanism of activation of the nitric oxide synthase enzyme, which leads to an increase in the production of nitric oxide observed in the other experiments reported. These results encourage us to suggest carajurin as a biological marker of A. chica.
Collapse
Affiliation(s)
- João Victor Silva-Silva
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Carla J Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Maria S S Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Paulo Victor R Souza
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Student on Postgraduate Program in Translational Research in Drugs and Medicines, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Davyson L Moreira
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Research Directorate of the Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro, RJ, 22460-030, Brazil.
| | - Celeste S F de Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Arthur R Cenci
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Animal Science, State University of Maranhão, São Luis, MA, Brazil.
| | - Maria D Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kátia S Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Moghadam MT, Chegini Z, Norouzi A, Dousari AS, Shariati A. Three-Decade Failure to the Eradication of Refractory Helicobacter pylori Infection and Recent Efforts to Eradicate the Infection. Curr Pharm Biotechnol 2021; 22:945-959. [PMID: 32767919 DOI: 10.2174/1389201021666200807110849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Helicobacter pylori causes dangerous and deadly diseases such as gastric cancer and duodenal ulcers. Eradication and treatment of this bacterium are very important due to the deadly diseases caused by H. pylori and the high cost of treatment for countries. METHODS Thus, we present a complete list of the most important causes of failure in the treatment and eradication of H. pylori, and address new therapeutic methods that may be effective in controlling this bacterium in the future. RESULTS Many efforts have been made to control and eradicate this bacterium over the years, but no success has been achieved since its eradication is a complex process affected by the bacterial properties and host factors. Previous studies have shown that various factors are involved in the failure to eradicate H. pylori, such as new genotypes of the bacterium with higher pathogenicity, inappropriate patient cooperation, mutations, biofilm formation and dormant forms that cause antibiotic resistance, acidic stomach pH, high bacterial load, smoking, immunosuppressive features and intracellular occurrence of H. pylori. On the other hand, recent studies reported that the use of probiotics, nanoparticles, antimicrobial peptides, natural product and vaccines can be helpful in the treatment and eradication of H. pylori infections. CONCLUSION Eradication of H. pylori is crucial for the treatment of important diseases such as gastric cancer. Therefore, it seems that identifying the failure causes of treating this bacterium can be helpful in controlling the infections. Besides, further studies on new therapeutic strategies may help eradicate H. pylori in the future.
Collapse
Affiliation(s)
- Majid T Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Norouzi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Olivero-Verbel J, De la Parra-Guerra A, Caballero-Gallardo K, Sierra-Marquez L, Fuentes-Lopez K, Franco-Marmolejo J, Jannasch AS, Sepulveda MS, Stashenko E. The aqueous extract of Fridericia chica grown in northern Colombia ameliorates toxicity induced by Tergitol on Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109026. [PMID: 33626396 DOI: 10.1016/j.cbpc.2021.109026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/26/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
The aqueous extract of fallen leaves from Fridericia chica (Bonpl.) L.G. Lohmann is utilized as a remedy in communities at northern Colombia. Traditional uses include wound healing, gastrointestinal inflammation, leukemia and psoriasis, among others. The aims of this research were to evaluate the potential of the aqueous extract of fallen leaves of F. chica (AEFchica) to inhibit ethoxylated nonylphenol (Tergitol)-induced toxicity in Caenorhabditis elegans; and to identify its main components. The pharmacological properties of AEFchica was evaluated using a Tergitol-induced toxicity model in Caenorhabditis elegans. Lethality, locomotion, reproduction, and DAF-16 nuclear translocation were quantified. The chemical composition of AEFchica was carried out using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. AEFchica induced very little lethality on C. elegans (5.6%) even at high concentrations (10,000 μg/mL). The extract had no effect on locomotion impairing induced by ethoxylated nonylphenol. However, AEFchica (1000 μg/mL) abrogated Tergitol-induced mortality, recovering up to 53.3% of the nematodes from lethality induced by 10 mM Tergitol. Similarly, it also blocked Tergitol-dependent reproduction inhibition (82.1% recovery), as well as DAF-16 nuclear translocation (>95%), suggesting a prominent role on oxidative stress control. The chemical analysis indicated the presence of a great variety of molecules with known antioxidant, metabolic and immune modulator properties, such as hydroxylated methoxy flavones, N-methyl-1-deoxynojirimycin, and rehmaionoside A. In short, the aqueous extract of F. chica protects C. elegans from the deleterious effects of Tergitol on lethality, reproduction and oxidative stress involving DAF-16-mediated pathway. This extract is a promising source of bioactive phytochemicals for multi-target pharmacological purposes.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Ana De la Parra-Guerra
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Lucellys Sierra-Marquez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Katerin Fuentes-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| | - Jackeline Franco-Marmolejo
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, 1203 W State St. West Lafayette, IN 47907, USA.
| | - Amber S Jannasch
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, 1203 W State St. West Lafayette, IN 47907, USA.
| | - Maria S Sepulveda
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller St., West Lafayette, IN 47907, USA.
| | - Elena Stashenko
- Center for Chromatography and Mass Spectrometry, CROM-MASS, CIBIMOL-CENIVAM, Industrial University of Santander, Carrera 27, Calle 9, Building 45, Bucaramanga 680002, Colombia.
| |
Collapse
|
23
|
The Influence of Anthocyanidin Profile on Antileishmanial Activity of Arrabidaea chica Morphotypes. Molecules 2020; 25:molecules25153547. [PMID: 32756445 PMCID: PMC7435800 DOI: 10.3390/molecules25153547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/30/2020] [Indexed: 01/28/2023] Open
Abstract
Arrabidaea chica Verlot (crajiru) is a plant used in folk medicine as an astringent, anti-inflammatory, wound healing and to treat fungal and viral diseases such as measles chickenpox and herpes. Arrabidaea chica has several morphotypes recognized but little is known about its chemical variability. In the present study the anthocyanidin profile of A. chica morphotypes collected in two seasons (summer and winter) have been examined and their activity against Leishmania infection compared. High-performance liquid chromatography coupled to a diode-array detector (HPLC-DAD-UV) and by tandem mass spectrometry with electrospray ionization (ESI-MS/MS) were used for anthocyanidin separation and identification. Antileishmanial activity was measured against promastigote forms of Leishmania amazonensis. Multivariate analysis, principal component analysis (PCA) and Pearson's correlation were performed to classify morphotypes accordingly to their anthocyanidin profile. The presence of 6,7,3',4'-tetrahydroxy-5-methoxyflavylium (3'-hydroxy-carajurone) (1), carajurone (2), 6,7,3'-trihydroxy-5,4'-dimethoxy-flavylium (3'-hydroxy-carajurin) (3) and carajurin (4), and three unidentified anthocyanidins were detected. Two different groups were recognized: group I containing 3'-hydroxy-carajurone; and group II with high content of carajurin. Among anthocyanidins identified in the extracts, only carajurin showed significant statistical correlation (p = 0.030) with activity against L. amazonensis. Carajurin could thus be considered as a pharmacological marker for the antileishmanial potential of the species.
Collapse
|
24
|
Baker DA. Plants against Helicobacter pylori to combat resistance: An ethnopharmacological review. ACTA ACUST UNITED AC 2020; 26:e00470. [PMID: 32477900 PMCID: PMC7248673 DOI: 10.1016/j.btre.2020.e00470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Worldwide, Helicobacter pylori (H. pylori) is regarded as the major etiological agent of peptic ulcer and gastric carcinoma. Claiming about 50 percent of the world population is infected with H. pylori while therapies for its eradication have failed because of many reasons including the acquired resistance against its antibiotics. Hence, the need to find new anti-H.pylori medications has become a hotspot with the urge of searching for alternative, more potent and safer inhibitors. In the recent drug technology scenario, medicinal plants are suggested as repositories for novel synthetic substances. Hitherto, is considered as ecofriendly, simple, more secure, easy, quick, and less toxic traditional treatment technique. This review is to highlight the anti-H. pylori medicinal plants, secondary metabolites and their mode of action with the aim of documenting such plants before they are effected by cultures and traditions that is expected as necessity.
Collapse
Affiliation(s)
- Doha Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
25
|
Pires ALR, Westin CB, Hernandez-Montelongo J, Sousa IMO, Foglio MA, Moraes AM. Flexible, dense and porous chitosan and alginate membranes containing the standardized extract of Arrabidaea chica Verlot for the treatment of skin lesions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110869. [PMID: 32409038 DOI: 10.1016/j.msec.2020.110869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 01/31/2023]
Abstract
The combination of chitosan (C) with alginate (A) has been explored for the production of dressings due to the positive results on wound healing. CA films can show a dense or porous flexible structure, with characteristics tunable for different applications. Porosity and flexibility can be achieved, respectively, by the addition of surfactants such as Kolliphor® P188 (P) and silicone-based compounds as Silpuran® 2130 A/B (S). Furthermore, composite matrices of these polysaccharides have potential applications as devices for releasing bioactive compounds to skin lesions. The purpose of this study was to evaluate the physicochemical and biological characteristics of flexible dense and porous CA membranes incorporating the standardized extract of Arrabidaea chica Verlot (A. chica), and also to analyze the release mechanism of the extract from different membrane formulations. The results show that the inclusion of P in the formulation allows obtaining porous matrices, promotes greater homogeneity of the mixture of the silicone gel with the suspension of polysaccharides, and increases the swelling of the polymer matrix. All formulations presented high stability, reaching a maximum mass loss of 18% after seven days. The formulations with S showed the best performance in terms of flexibility and strain at break. The presence of A. chica standardized extract did not affect negatively the characteristics of the membranes. Incorporation efficiencies of the bioactive compound above 87% were achieved, and the addition of P and S to the membrane formulation changed the release of the A. chica extract kinetics. In addition, the developed formulations did not significantly affect Vero cells proliferation.
Collapse
Affiliation(s)
- A L R Pires
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - C B Westin
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - I M O Sousa
- School of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - M A Foglio
- School of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - A M Moraes
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
26
|
Olyaei A, Sadeghpour M, Khalaj M. Mannich bases derived from lawsone and their metal complexes: synthetic strategies and biological properties. RSC Adv 2020; 10:30265-30281. [PMID: 35516010 PMCID: PMC9056394 DOI: 10.1039/d0ra05717g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Lawsone (2-hydroxynaphthalene-1,4-dione) is a natural product which shows significant biological activity.
Collapse
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry
- Payame Noor University (PNU)
- Tehran
- Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry
- Takestan Branch
- Islamic Azad University
- Takestan
- Iran
| | - Mehdi Khalaj
- Department of Chemistry
- Buinzahra Branch
- Islamic Azad University
- Buinzahra
- Iran
| |
Collapse
|
27
|
Profile of phenolic compounds and carotenoids of Arrabidaea chica leaves and the in vitro singlet oxygen quenching capacity of their hydrophilic extract. Food Res Int 2019; 126:108597. [DOI: 10.1016/j.foodres.2019.108597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022]
|
28
|
Xiong Y, Zhang P, Warner RD, Fang Z. 3-Deoxyanthocyanidin Colorant: Nature, Health, Synthesis, and Food Applications. Compr Rev Food Sci Food Saf 2019; 18:1533-1549. [PMID: 33336915 DOI: 10.1111/1541-4337.12476] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
3-Deoxyanthocyanidins are a rare type of anthocyanins that are present in mosses, ferns, and some flowering plants. They are water-soluble pigments and impart orange-red and blue-violet color to plants and play a role as phytoalexins against microbial infection and environmental stress. In contrast to anthocyanins, the lack of a hydroxyl group at the C-3 position confers unique chemical and biochemical properties. They are potent natural antioxidants with a number of potential health benefits including cancer prevention. 3-Deoxyanthocyanidin pigments have attracted much attention in the food industry as natural food colorants, mainly due to their higher stability during processing and handling conditions compared with anthocyanins. They are also photochromic compounds capable of causing a change in "perceived" color, when exposed to UV light, which can be used to design novel foods and beverages. Due to their interesting properties and potential industrial applications, great efforts have been made to synthesize these compounds. For biosynthesis, researchers have discovered the 3-deoxyanthocyanidin biosynthetic pathway and their biosynthetic genes. For chemical synthesis, advances have been made to synthesize the compounds in a simpler and more efficient way as well as looking for its novel derivative with enhanced coloration properties. This review summarizes the developments in the research on 3-deoxyanthocyanidin as a colorant, from natural sources to chemical syntheses and from health benefits to applications and future prospects, providing comprehensive insights into this group of interesting compounds.
Collapse
Affiliation(s)
- Yun Xiong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
29
|
Ghasemian A, Fattahi A, Shokouhi Mostafavi SK, Almarzoqi AH, Memariani M, Ben Braiek O, Yassine HM, Mostafavi NSS, Ahmed MM, Mirforughi SA. Herbal medicine as an auspicious therapeutic approach for the eradication of Helicobacter pylori infection: A concise review. J Cell Physiol 2019; 234:16847-16860. [PMID: 30847906 DOI: 10.1002/jcp.28363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori (H. pylori) causes gastric mucosa inflammation and gastric cancer mostly via several virulence factors. Induction of proinflammatory pathways plays a crucial role in chronic inflammation, gastric carcinoma, and H. pylori pathogenesis. Herbal medicines (HMs) are nontoxic, inexpensive, and mostly anti-inflammatory reminding meticulous emphasis on the elimination of H. pylori and gastric cancer. Several HM has exerted paramount anti-H. pylori traits. In addition, they exert anti-inflammatory effects through several cellular circuits such as inhibition of 5'-adenosine monophosphate-activated protein kinase, nuclear factor-κB, and activator protein-1 pathway activation leading to the inhibition of proinflammatory cytokines (interleukin 1α [IL-1α], IL-1β, IL-6, IL-8, IL-12, interferon γ, and tumor necrosis factor-α) expression. Furthermore, they inhibit nitrous oxide release and COX-2 and iNOS activity. The apoptosis induction in Th1 and Th17-polarized lymphocytes and M2-macrophagic polarization and STAT6 activation has also been exhibited. Thus, their exact consumable amount has not been revealed, and clinical trials are needed to achieve optimal concentration and their pharmacokinetics. In the aspect of bioavailability, solubility, absorption, and metabolism of herbal compounds, nanocarriers such as poly lactideco-glycolide-based loading and related formulations are helpful. Noticeably, combined therapies accompanied by probiotics can also be examined for better clearance of gastric mucosa. In addition, downregulation of inflammatory microRNAs (miRNAs) by HMs and upregulation of those anti-inflammatory miRNAs is proposed to protect the gastric mucosa. Thus there is anticipation that in near future HM-based formulations and proper delivery systems are possibly applicable against gastric cancer or other ailments because of H. pylori.
Collapse
Affiliation(s)
- Abdolmajid Ghasemian
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Hussein Almarzoqi
- Department of Biology, College of Science for Women, Babylon University, Babylon, Iraq
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Olfa Ben Braiek
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El-Manar, El Manar, Tunisia
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Mohanad Mohsin Ahmed
- Department of Microbiology, College of Medicine, University of Kerbala, Kerbala, Iraq
| | - Seyede Amene Mirforughi
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
30
|
Lima JCS, de Oliveira RG, Silva VC, de Sousa PT, Violante IMP, Macho A, Martins DTDO. Anti-inflammatory activity of 4',6,7-trihydroxy-5-methoxyflavone from Fridericia chica (Bonpl.) L.G.Lohmann. Nat Prod Res 2018; 34:726-730. [PMID: 30445823 DOI: 10.1080/14786419.2018.1495636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
Fridericia chica, Bignoniaceae, is a tropical tree-creeper used as a traditional remedy for a number of diseases, highlighting inflammation. Our objective was to corroborate the popular anti-inflammatory use of the hydroethanolic extract from the leaves (HEFc) and of its isolated 4',6,7-trihydroxy-5-methoxyflavone (5-O-methylscutellarein) [1], described here for the first time. Quantitative analysis indicated 8.77 ± 0.23 mg/g of this compound in the extract. Neither HEFc nor [1] was cytotoxic in vitro. In LPS-induced peritonitis in mice, oral pre-treatment with HEFc or [1] led to decreased leukocyte migration to the peritoneal cavity and a reduction in the concentrations of pro-inflammatory cytokines (TNFα and IL-1β). Also, the anti-inflammatory cytokine IL-10 was enhanced following treatment with [1]. Overall, these results validate the traditional use of Fridericia chica as anti-inflammatory, and indicate that the compound 5-O-methylscutellarein may participate in this effect.
Collapse
Affiliation(s)
- Joaquim C S Lima
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Ruberlei Godinho de Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Virgínia C Silva
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Paulo Teixeira de Sousa
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Ivana M P Violante
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil.,Departamento de Farmácia, Universidade de Cuiabá, Cuiabá, Brazil
| | - Antonio Macho
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | | |
Collapse
|
31
|
Yeon MJ, Lee MH, Kim DH, Yang JY, Woo HJ, Kwon HJ, Moon C, Kim SH, Kim JB. Anti-inflammatory effects of Kaempferol on Helicobacter pylori-induced inflammation. Biosci Biotechnol Biochem 2018; 83:166-173. [PMID: 30286691 DOI: 10.1080/09168451.2018.1528140] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Inflammation induced by Helicobacter pylori infection related to gastric carcinogenesis. In this study, we have investigated the anti-inflammatory effect and its mechanism of kaempferol in the inflammatory response caused by H. pylori infection in vitro. We found that kaempferol reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-8) and production of IL-8 in AGS cells. In addition, kaempferol suppressed translocation of cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) of H. pylori to AGS cells. It was due to decreased transcription of type IV secretion system (T4SS) components involved in CagA injection and secretion system subunit protein A (SecA) of type V secretion system (T5SS) involved in VacA secretion by kaempferol. In conclusion, kaempferol shows the anti-inflammatory effect by suppressing the translocation of CagA and VacA proteins and leading to the down-regulation of pro-inflammatory cytokines. Abbreviations: CagA: cytotoxin-associated gene A; VacA: vacuolating cytotoxin A; T4SS: type IV secretion systems; SecA: secretion system subunit protein A; T5SS: type V secretion system.
Collapse
Affiliation(s)
- Min Ji Yeon
- a Department of Biomedical Laboratory Science, College of Health Sciences , Yonsei University , Wonju , Republic of Korea
| | - Min Ho Lee
- b Forensic DNA Division , National Forensic Service , Wonju , Republic of Korea
| | - Do Hyun Kim
- a Department of Biomedical Laboratory Science, College of Health Sciences , Yonsei University , Wonju , Republic of Korea
| | - Ji Yeong Yang
- a Department of Biomedical Laboratory Science, College of Health Sciences , Yonsei University , Wonju , Republic of Korea
| | - Hyun Jun Woo
- a Department of Biomedical Laboratory Science, College of Health Sciences , Yonsei University , Wonju , Republic of Korea
| | - Hye Jin Kwon
- a Department of Biomedical Laboratory Science, College of Health Sciences , Yonsei University , Wonju , Republic of Korea
| | - Cheol Moon
- c Department of Clinical Laboratory Science , Semyung University , Jecheon , Republic of Korea
| | - Sa-Hyun Kim
- c Department of Clinical Laboratory Science , Semyung University , Jecheon , Republic of Korea
| | - Jong-Bae Kim
- a Department of Biomedical Laboratory Science, College of Health Sciences , Yonsei University , Wonju , Republic of Korea
| |
Collapse
|
32
|
Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now? Int J Mol Sci 2018; 19:ijms19082361. [PMID: 30103451 PMCID: PMC6121492 DOI: 10.3390/ijms19082361] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
In this critical review, plant sources used as effective antibacterial agents against Helicobacter pylori infections are carefully described. The main intrinsic bioactive molecules, responsible for the observed effects are also underlined and their corresponding modes of action specifically highlighted. In addition to traditional uses as herbal remedies, in vitro and in vivo studies focusing on plant extracts and isolated bioactive compounds with anti-H. pylori activity are also critically discussed. Lastly, special attention was also given to plant extracts with urease inhibitory effects, with emphasis on involved modes of action.
Collapse
|
33
|
de Melo CL, Barboza B, da Silva Barros B, Ramos BA, de Moura M, Napoleão T, dos Santos Correia M, Barroso Coelho LB, da Cruz Filho I, Souto Maior A, da Silva T, Rodrigues Nerys LC, de Santana EB, de Andrade Lima C, de Lorena VB. Phytochemical bioprospecting, antioxidant, antimicrobial and cytotoxicity activities of saline extract from Tithonia diversifolia (Hemsl) A. Gray leaves. Asian Pac J Trop Biomed 2018. [DOI: 10.4103/2221-1691.233005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022] Open
|
34
|
In vitro toxicological assessment of Arrabidaea brachypoda (DC.) Bureau: Mutagenicity and estrogenicity studies. Regul Toxicol Pharmacol 2017; 90:29-35. [DOI: 10.1016/j.yrtph.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
35
|
Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM. Plants' Natural Products as Alternative Promising Anti- Candida Drugs. Pharmacogn Rev 2017; 11:104-122. [PMID: 28989245 PMCID: PMC5628516 DOI: 10.4103/phrev.phrev_8_17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
Candida is a serious life-threatening pathogen, particularly with immunocompromised patients. Candida infections are considered as a major cause of morbidity and mortality in a broad range of immunocompromised patients. Candida infections are common in hospitalized patients and elderly people. The difficulty to eradicate Candida infections is owing to its unique switch between yeast and hyphae forms and more likely to biofilm formations that render resistance to antifungal therapy. Plants are known sources of natural medicines. Several plants show significant anti-Candida activities and some of them have lower minimum inhibitory concentration, making them promising candidates for anti-Candida therapy. However, none of these plant products is marketed for anti-Candida therapy because of lack of sufficient information about their efficacy, toxicity, and kinetics. This review revises major plants that have been tested for anti-Candida activities with recommendations for further use of some of these plants for more investigation and in vivo testing including the use of nanostructure lipid system.
Collapse
Affiliation(s)
- Sameh Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Dina Alnajdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ali A. El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
| | - Kareem A. Mosa
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayman M. Noreddin
- Department of Pharmacy Practice and Pharmacotherapy, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice, School of Pharmacy, Chapman University, Irvine, California, USA
| |
Collapse
|
36
|
Miranda N, Gerola AP, Novello CR, Ueda-Nakamura T, de Oliveira Silva S, Dias-Filho BP, Hioka N, de Mello JCP, Nakamura CV. Pheophorbide a, a compound isolated from the leaves of Arrabidaea chica, induces photodynamic inactivation of Trypanosoma cruzi. Photodiagnosis Photodyn Ther 2017; 19:256-265. [PMID: 28587855 DOI: 10.1016/j.pdpdt.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Approximately 6-7 million people are infected with Trypanosoma cruzi, the etiological agent of Chagas' disease. Only two therapeutic compounds have been found to be useful against this disease: nifurtimox and benznidazole. These drugs have been effective in the acute phase of the disease but less effective in the chronic phase; they also have many side effects. Thus, the search for new compounds with trypanocidal action is necessary. Natural products can be the source of many important substances for the development of drugs to treat this infection. The present study evaluated the biological activity of an extract and fractions of Arrabidaea chica against T. cruzi and observed morphological and ultrastructural characteristics of parasites exposed to the isolated compound pheophorbide a. METHODS The crude hydroethanolic extract of A. chica was prepared. Fractions were obtained by partition and separated by liquid chromatography. RESULTS We observed a progressive increase in activity against epimastigote, trypomastigote, and amastigote forms of the parasite over the course of the fractionation process. Interestingly, we isolated a compound known as a photosensitizer that is used in photodynamic therapy. This method of treatment involving a photosensitizer, activation light and molecular oxygen is of great importance due to its selectivity. Pheophorbide a had activity against the protozoan in the presence of light and caused morphological and ultrastructural changes, demonstrating its potential in photodynamic therapy. CONCLUSIONS Based on the ability of pheophorbide a to eliminate bloodstream forms of T. cruzi, we suggest its use in blood banks for hemoprophylaxis.
Collapse
Affiliation(s)
- Nathielle Miranda
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil.
| | | | | | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| | - Sueli de Oliveira Silva
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| | - Benedito Prado Dias-Filho
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - João Carlos Palazzo de Mello
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
37
|
Cortez de Sá J, Almeida-Souza F, Mondêgo-Oliveira R, Oliveira IDSDS, Lamarck L, Magalhães IDFB, Ataídes-Lima AF, Ferreira HDS, Abreu-Silva AL. Leishmanicidal, cytotoxicity and wound healing potential of Arrabidaea chica Verlot. Altern Ther Health Med 2016; 16:1. [PMID: 26729470 PMCID: PMC4700775 DOI: 10.1186/s12906-015-0973-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Leishmaniasis includes a wide complex of diseases that affect humans and other mammals, and can range from a mild cutaneous form to a severe visceral type. The safety of the standard treatment using pentavalent antimony is a concern due to its toxic effects. The search for alternative, effective and less toxic treatments has led to the testing of natural products. The present study aimed to evaluate the cytotoxic, leishmanicidal and healing potential of Arrabidaea chica. METHODS The crude ethanolic extract, as well as the chloroform, methanol and ethyl acetate fractions of A. chica were prepared and phytochemical analysis was performed. Cytotoxic evaluation was carried out through MTT colorimetric assay, and the 50% cellular cytotoxicity was determined. After that, the effect of the extract and fractions against Leishmania amazonensis promastigotes, at intervals of 24, 48 and 72 h, was analyzed, and 50% inhibitory concentration was determined. The healing effect of the plant was also tested in surgical lesions in Swiss mice skin. RESULTS Phytochemical screening showed that the crude extracts contained flavonoids, tannins, anthocyanidins and chalcones. The leishmanicidal potential of A. chica produced satisfactory results in concentrations of between 60 and 155.9 μg/mL. Cytotoxic assay revealed a 50% reduction in viable cells at a concentration of 189.9 μg/mL. The healing results indicated that the treated group exhibited more pronounced signs of lesion resolution in the early period, but this pattern did not persist throughout the treatment. CONCLUSIONS The results of the present study demonstrate that A. chica has cytotoxic and leishmanicidal potential but its healing effect must be better studied.
Collapse
|
38
|
Gemelli TF, Prado LDS, Santos FS, de Souza AP, Guecheva TN, Henriques JAP, Ferraz ADBF, Corrêa DS, Dihl RR, Picada JN. Evaluation of Safety of Arrabidaea chica Verlot (Bignoniaceae), a Plant with Healing Properties. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1170-1180. [PMID: 26383782 DOI: 10.1080/15287394.2015.1072070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
Arrabidaea chica Verlot (Bignoniaceae) has been used as a medicinal herb to treat anemia, hemorrhage, inflammation, intestinal colic, hepatitis, and skin infections in the Brazilian Amazon region. Studies have demonstrated the healing properties of extracts obtained from A. chica leaves, which contain anthocyanins and flavonoids. However, few investigations have assessed the safe use of this plant species. In this study, mutagenic and genotoxic effects of a crude aqueous extract, a butanolic fraction, and aqueous waste from A. chica leaves were evaluated using the Salmonella/microsome assay in TA98, TA97a, TA100, TA102, and TA1535 strains and the alkaline comet assay in Chinese hamster ovary (CHO) cell culture with and without metabolic activation. The crude aqueous extract, butanolic fraction, and aqueous waste were not mutagenic in any of the Salmonella typhimurium strains tested, and showed negative responses for genotoxicity in CHO cells. High-performance liquid chromatography (HPLC) analysis indicated the presence of phenolic acids and flavonoids such as rutin and luteolin. The lack of mutagenic/genotoxic effects might be due to phytochemical composition with high concentrations of known anti-inflammatory compounds. Thus, the crude aqueous extract, butanolic fraction, and aqueous waste from A. chica leaves do not appear to pose short-term genotoxic risks.
Collapse
Affiliation(s)
- Tiago Farret Gemelli
- a Laboratório de Genética Toxicológica , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
- b Laboratório TOXIGEN , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
| | - Lismare da Silva Prado
- a Laboratório de Genética Toxicológica , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
| | - Franciele Souza Santos
- a Laboratório de Genética Toxicológica , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
| | - Ana Paula de Souza
- b Laboratório TOXIGEN , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
| | - Temenouga Nikolova Guecheva
- c Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - João Antonio Pêgas Henriques
- c Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | | | - Dione Silva Corrêa
- e Centro Petroquímico de Pesquisa e Desenvolvimento (CEPPED) , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
| | - Rafael Rodrigues Dihl
- b Laboratório TOXIGEN , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
| | - Jaqueline Nascimento Picada
- a Laboratório de Genética Toxicológica , Universidade Luterana do Brasil (ULBRA) , Canoas , Rio Grande do Sul , Brazil
| |
Collapse
|
39
|
Bieski IGC, Leonti M, Arnason JT, Ferrier J, Rapinski M, Violante IMP, Balogun SO, Pereira JFCA, Figueiredo RDCF, Lopes CRAS, da Silva DR, Pacini A, Albuquerque UP, Martins DTDO. Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:383-423. [PMID: 26234177 DOI: 10.1016/j.jep.2015.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/13/2015] [Revised: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE The use of medicinal plants for treatment, cure and prevention of diseases has been described by many people since time immemorial. Because of this use, commercial and scientific interests have emerged, making it necessary to realize ethnobotanical surveys of medicinal plants species, which is important for subsequent chemical and pharmacological bioprospections. AIM OF THE STUDY This study aimed at surveying, identifying, cataloging and documenting the medicinal plants species used in the Valley of Juruena, Northwestern Mato Grosso, Legal Amazon Brazil for the treatment of various human diseases, as well as assessed the species of interest for bioprospecting potential. MATERIALS AND METHODS Informants were interviewed using semi-structured form to capture information on socio-demographic and ethnopharmacological data of medicinal plants such as vernacular name, uses, geographic origin, habit, form of preparation and part used. Results were analyzed using descriptive and quantitative means: indices of use-report (Ur) and informant consensus factor (ICF), for the selection of plant species with therapeutic potential. RESULTS Three hundred and thirty two (332) plants species belonging to 90 families were reported for medicinal purposes and totaling 3973 use-reports were reported by 365 (92.9%) of the people interviewed. Asteraceae (32.2%), Fabaceae (26.7%) and Lamiaceae (24.4%) families were the most represented, with majority being species native (64.45%) to Brazil. Leaves (64.5%) were the part of the plant most used and infusion (45.7%) was the most utilized form. Gastrointestinal disorders followed by respiratory complaints topped the list of use-reports. The native or naturalized plants with the highest use reports in the order of decreasing absolute frequency per each emic-category are Cymbopogon citratus (DC.) Stapfc (104), Mentha pulegium L. (94), Arrabidaea chica (Humb. & Bonpl.) B. Verl. (97), Alternanthera brasiliana (L.) Kuntze (71), Baccharis crispa Spreng (57), Phyllanthus niruri L. (48), Gossypium barbadense L. (44), Solidago microglossa DC. (40) and Bauhinia forficata L. (20). And the most cited exotics are: Chenopodium ambrosioides L. (151), Aloe vera (L.) Burm. f., (89) and Rosmarinus officinalis L. (72). In some cases, high ICF values were found, which reflects high degree of homogeneity of consensus among informants in this region on medicinal plants. CONCLUSION The population of Valle of Juruena makes use of a wide array of medicinal plants distributed in all use categories with predominance of those use in the treatments of gastrointestinal and respiratory ailments. The therapeutic potential of some of the species of medicinal importance extensively utilized by the population of the region have been scientifically validated, and are therefore promising prototype of new drugs. However, there are some of these species whose ethnomedicinal uses are yet to be scientifically verified and thus constitute an unexplored terrain for future biological/pharmacological studies.
Collapse
Affiliation(s)
- Isanete Geraldini Costa Bieski
- Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - John Thor Arnason
- Department Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| | - Jonathan Ferrier
- Department Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| | - Michel Rapinski
- Department Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| | - Ivana Maria Povoa Violante
- Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Sikiru Olaitan Balogun
- Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - João Filipe Costa Alves Pereira
- Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Rita de Cassia Feguri Figueiredo
- Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Célia Regina Araújo Soares Lopes
- Faculty of Biological and Agrarian Sciences, University of Mato Grosso State (UNEMAT), Campus Universitário de Alta Floresta, UNEMAT, 208, km 146, Jardim Tropical, Alta Floresta, MT, Brazil
| | - Dennis Rodrigues da Silva
- Faculty of Biological and Agrarian Sciences, University of Mato Grosso State (UNEMAT), Campus Universitário de Alta Floresta, UNEMAT, 208, km 146, Jardim Tropical, Alta Floresta, MT, Brazil
| | - Aloir Pacini
- Department of Anthropology, Rondon Museum, Federal University of Mato Grosso, Brazil
| | - Ulysses Paulino Albuquerque
- Department of Biology, Laboratory of Applied and Theoretical Ethnobiology (LEA), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | | |
Collapse
|
40
|
Safavi M, Shams-Ardakani M, Foroumadi A. Medicinal plants in the treatment of Helicobacter pylori infections. PHARMACEUTICAL BIOLOGY 2015; 53:939-960. [PMID: 25430849 DOI: 10.3109/13880209.2014.952837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Helicobacter pylori is a small, spiral, Gram-negative bacillus that plays a role in the pathogenesis of a number of diseases ranging from asymptomatic gastritis to gastric cancer. Schedule compliance, antibiotic drug resistance, and side-effects of triple or quadruple therapy have led to research for novel candidates from plants. OBJECTIVE The purpose of this paper is to review the most potent medicinal plants of recently published literature with anti-H. pylori activity. For centuries, herbals have been used by traditional healers around the world to treat various gastrointestinal tract disorders such as dyspepsia, gastritis, and peptic ulcer disease. The mechanism of action by which these botanicals exert their therapeutic properties has not been completely and clearly elucidated. Anti-H. pylori properties may be one of the possible mechanisms by which gastroprotective herbs treat gastrointestinal tract disorders. MATERIALS AND METHODS Electronic databases such as PubMed, Google scholar, EBSCO, and local databases were explored for medicinal plants with anti-H. pylori properties between 1984 and 2013 using key words "medicinal plants" and "Helicobacter pylori" or "anti-Helicobacter pylori". RESULTS A total of 43 medicinal plant species belonging to 27 families including Amaryllidaceae, Anacardiaceae, Apiaceae, Apocynaceae, Asclepiadoideae, Asteraceae, Bignoniaceae, Clusiaceae, Chancapiedra, Combretaceae, Cyperaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Lamiaceae, Lauraceae, Lythraceae, Menispermaceae, Myristicaceae, Myrtaceae, Oleaceae, Papaveraceae, Plumbaginaceae, Poaceae, Ranunculaceae, Rosaceae, and Theaceae were studied as herbs with potent anti-H. pylori effects. CONCLUSION Traditional folk medicinal use of some of these plants to treat gastric infections is substantiated by the antibacterial activity of their extracts against H. pylori.
Collapse
Affiliation(s)
- Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST) , Tehran , Iran
| | | | | |
Collapse
|
41
|
Michel AFRM, Melo MM, Campos PP, Oliveira MS, Oliveira FAS, Cassali GD, Ferraz VP, Cota BB, Andrade SP, Souza-Fagundes EM. Evaluation of anti-inflammatory, antiangiogenic and antiproliferative activities of Arrabidaea chica crude extracts. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:29-38. [PMID: 25683298 DOI: 10.1016/j.jep.2015.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/09/2014] [Revised: 01/25/2015] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arrabidaea chica (Bignoniacea) has been used in popular medicine in Brazil to treat inflammation, skin diseases and leukemia. This work aimed to investigate the anti-inflammatory and antitumoral activities of the A. chica aqueous (AE) and ethanol (EE) extracts. MATERIALS AND METHODS The murine sponge model was used to evaluate the anti-inflammatory and antiangiogenic activities of AE and EE. Accumulation of neutrophil and macrophage in the implants were determined by assaying myeloperoxidase and N-acetyl-glucosaminidase activities and the neovascularization evaluated by the amount of hemoglobin present in the implant using the Drabkin method. The antitumoral activity was evaluated using the MTT colorimetric method against Jurkat, HL60 and MCF-7 cells. Semi-purified fractions F1-F4 from the EE extract were obtained by a liquid-liquid solvent extraction method and their in vitro anti-proliferative effects were also investigated. RESULTS Ethanol and aqueous extracts of A. chica decreased neutrophil accumulation and hemoglobin content in the sponge implants without altering the level of cytokines (IL-2, IL- 4, IL-5, IFN-γ, TNF-α and VEGF) and the albumin/globulin ratio in the serum of treated animals. There was no sign of toxicity (clinical, laboratory or histopathology). The ethanol extract presented antiproliferative activity (IC50 21.5-36.3 µg/mL) against HL60 and Jurkat cell lineages and proapoptotic activity at 50 µg/mL in HL60 cells. The fraction F1 also demonstrated significant antiproliferative activity (IC50 38.5 µg/mL) and proapoptotic activity against HL60 cells in a dose dependent manner. CONCLUSIONS Aqueous and ethanol extracts of A. chica attenuate the inflammatory and angiogenic components of the subcutaneous fibrovascular tissue induced by the synthetic matrix in mice. In addition, the ethanol extract from Arrabidaea chica and its fraction F1 presented in vitro antiproliferative activity and could be useful for developing potential chemopreventive substances.
Collapse
Affiliation(s)
| | - Marília Martins Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Peixoto Campos
- Instituto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maira Souza Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiano Aurélio Silva Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanny Perpétua Ferraz
- Instituto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Betânia Barros Cota
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou-FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Silvia Passos Andrade
- Instituto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
42
|
Arrabidaea chica hexanic extract induces mitochondrion damage and peptidase inhibition on Leishmania spp. BIOMED RESEARCH INTERNATIONAL 2014; 2014:985171. [PMID: 24818162 PMCID: PMC4000971 DOI: 10.1155/2014/985171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/21/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022]
Abstract
Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC). In addition, the effect of the most active fraction (B2) on parasite's ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 μg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents.
Collapse
|