1
|
Barbosa BVDDR, Alves JVDO, Costa WK, Aguiar IFDS, Galvão LRL, Silva PMD, Silva LAD, Silva BVSD, Lima JSD, Oliveira AMD, Napoleão TH, Silva MVD, Correia MTDS. Almond fixed oil from Syagrus coronata (Mart.) Becc. has antinociceptive and anti-inflammatory potential, without showing oral toxicity in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118283. [PMID: 38734393 DOI: 10.1016/j.jep.2024.118283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syagrus coronata, a palm tree found in northeastern Brazil, popularly known as licuri, has socioeconomic importance for the production of vegetable oil rich in fatty acids with nutritional and pharmacological effects. Licuri oil is used in traditional medicine to treat inflammation, wound healing, mycosis, back discomfort, eye irritation, and other conditions. AIM OF THE STUDY The study aimed to evaluate the antinociceptive, anti-inflammatory, and antipyretic effects of treatment with Syagrus coronata fixed oil (ScFO), as well as to determine the safety of use in mice. MATERIALS AND METHODS Initially, the chemical characterization was performed by gas chromatography-mass spectrometry. Acute single-dose oral toxicity was evaluated in mice at a dose of 2000 mg/kg. Antinociceptive activity was evaluated through abdominal writhing, formalin, and tail dipping tests, and the anti-inflammatory potential was evaluated through the model of acute inflammation of ear edema, peritonitis, and fever at concentrations of 25, 50, and 100 mg/kg from ScFO. RESULTS In the chemical analysis of ScFO, lauric (43.64%), caprylic (11.7%), and capric (7.2%) acids were detected as major. No mortality or behavioral abnormalities in the mice were evidenced over the 14 days of observation in the acute toxicity test. ScFO treatment decreased abdominal writhing by 27.07, 28.23, and 51.78% at 25, 50, and 100 mg/kg. ScFO demonstrated central and peripheral action in the formalin test, possibly via opioidergic and muscarinic systems. In the tail dipping test, ScFO showed action from the first hour after treatment at all concentrations. ScFO (100 mg/kg) reduced ear edema by 63.76% and leukocyte and neutrophil migration and IL-1β and TNF-α production in the peritonitis test. CONCLUSION Mice treated with ScFO had a reduction in fever after 60 min at all concentrations regardless of dose. Therefore, the fixed oil of S. coronata has the potential for the development of new pharmaceutical formulations for the treatment of pain, inflammation, and fever.
Collapse
Affiliation(s)
| | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | | | | | - Paloma Maria da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Luzia Abílio da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | | | - Jucielma Silva de Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil; Programa de Pós-graduação Em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, 58429-500, Brazil
| | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | | |
Collapse
|
2
|
Liu S, Zhang T, Li Z, Wang Y, Liu L, Song Z. Antibacterial mechanism of areca nut essential oils against Streptococcus mutans by targeting the biofilm and the cell membrane. Front Cell Infect Microbiol 2023; 13:1140689. [PMID: 37701779 PMCID: PMC10494717 DOI: 10.3389/fcimb.2023.1140689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Dental caries is one of the most common and costly biofilm-dependent oral diseases in the world. Streptococcus mutans is the major cariogenic pathogen of dental caries. S. mutans synthesizes extracellular polysaccharides by autologous glucosyltransferases, which then promotes bacterial adhesion and cariogenic biofilm formation. The S. mutans biofilm is the principal target for caries treatment. This study was designed to explore the antibacterial activity and mechanisms of areca nut essential oil (ANEO) against S. mutans. Methods The ANEOs were separated by negative pressure hydro-distillation. The Kirby-Bauer method and broth microdilution method were carried out to evaluate the antibacterial activity of different ANEOs. The antibacterial mechanism was revealed by crystal violet staining, XTT reduction, microbial adhesion to hydrocarbon test, extracellular polysaccharide production assay, glucosyltransferase activity assay, lactate dehydrogenase leaking, propidium iodide staining and scanning electron microscopy (SEM). The cytotoxicity of ANEOs was determine by MTT assay. Results The ANEOs separated at different temperatures exhibited different levels of antibacterial activity against S. mutans, and the ANEO separated at 70°C showed the most prominent bacteriostatic activity. Anti-biofilm experiments showed that the ANEOs attenuated the adhesion ability of S. mutans by decreasing the surface hydrophobicity of the bacteria, prevented S. mutans biofilm formation by inhibiting glucosyltransferase activity, reducing extracellular polysaccharide synthesis, and reducing the total biofilm biomass and activity. SEM further demonstrated the destructive effects of the ANEOs on the S. mutans biofilm. Cell membrane-related experiments indicated that the ANEOs destroyed the integrity of the cell membrane, resulting in the leakage of lactic dehydrogenase and nucleic acids. SEM imaging of S. mutans cell showed the disruption of the cellular morphology by the ANEOs. The cytotoxicity assay suggested that ANEO was non-toxic towards normal oral epithelial cells. Discussion This study displayed that ANEOs exerted antibacterial activity against S. mutans primarily by affecting the biofilm and disrupting the integrity of the cell membrane. ANEOs has the potential to be developed as an antibacterial agent for preventing dental caries. Additionally, a new method for the separation of essential oil components is presented.
Collapse
Affiliation(s)
- Shuwei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China
| | - Tiantian Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China
| | - Zhijin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- Xiamen Key Laboratory of Natural Medicine Research and Development, Xiamen Health and Medical Big Data Center (Xiamen Medicine Research Institute), Xiamen, China
| | - Yan Wang
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| |
Collapse
|
3
|
The Neuroprotective Effects of Arecae Pericarpium against Glutamate-Induced HT22 Cell Cytotoxicity. Curr Issues Mol Biol 2022; 44:5902-5914. [PMID: 36547063 PMCID: PMC9776483 DOI: 10.3390/cimb44120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Arecae Pericarpium has been found to exert anti-migraine, antidepressant, and antioxidative effects. However, the mechanisms involved are unclear. This study explored the possibility that Arecae Pericarpium ethanol extract (APE) exerts neuroprotective effects against oxidative stress-induced neuronal cell death. Since glutamate excitotoxicity has been implicated in the pathogenesis and development of several neurodegenerative disorders, we explored the mechanisms of action of APE on oxidative stress-induced by glutamate. Our results revealed that pretreatment with APE prevents glutamate-induced HT22 cell death. APE also reduced both the levels of intracellular reactive oxygen species and the apoptosis of cells, while maintaining glutamate-induced mitochondrial membrane potentials. Western blotting showed that pretreatment with APE facilitates the upregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) phosphorylation; the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2); and the production of antioxidant enzymes, including catalase, glutamate-cysteine ligase catalytic subunits, NAD(P)H quinone oxidoreductase 1, and heme oxygenase (HO)-1. The administration of LY294002, a PI3K/Akt inhibitor, attenuated the neuroprotective effects of APE on oxidative stress-induced neuronal cell damage. This allowed us to infer that the protective effects of APE on oxidative damage to cells can be attributed to the PI3K/Akt-mediated Nrf-2/HO-1 signaling pathway.
Collapse
|
4
|
Aqueous extract of Piper betle L. leaf and Areca catechu L. nut protects against pentylenetetrazole-induced seizures and positively modulates cognitive function in adult Zebrafish. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Yang Y, Huang H, Cui Z, Chu J, Du G. UPLC-MS/MS and Network Pharmacology-Based Analysis of Bioactive Anti-Depression Compounds in Betel Nut. Drug Des Devel Ther 2021; 15:4827-4836. [PMID: 34880597 PMCID: PMC8645950 DOI: 10.2147/dddt.s335312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background Betel nuts have long been used in traditional Chinese medicine. In our study, the bioactive components of betel nut were systematically investigated, and the main components and their target genes in the treatment of depression were predicted. Methods The metabolites of the kernels and peels were analyzed with a UPLC–MS/MS system. Mass spectrometry outcomes were annotated by MULTIAQUANT. “Compound‐disease targets” were utilized to construct a pharmacology network. Results A total of 873 metabolites were identified, with a high abundance of flavonoids, alkaloids, and phenols. Moreover, the abundance of flavonoids, alkaloids, and phenols in the kernel was significantly higher than that in the peel. A high abundance of catechin, arginine, and phenylalanine was detected in the kernel, while a high abundance of arginine, arecoline, and aminobutyric acid was detected in the peel. Catechins and cyanoside were the most abundant flavonoids in the kernel and peel, respectively. Arecoline was the most abundant alkaloid. A total of 111 metabolites showed a significant difference between the kernels and peels. The relative abundance of 40 differential metabolites was higher than 100,000, including 14 primary metabolites, 12 flavonoids, 4 phenols, and 4 alkaloids. Among the 40 high abundance metabolites, 20 were higher in the kernel and 20 in the peel. In addition, the enrichment of metabolic pathways found that the kernel and peel of the fruit adopted different metabolic pathways for the synthesis of flavonoids and alkaloids. Network pharmacology prediction showed that 93 metabolites could target 141 depression-related genes. The main components of betel nut intervention in depression were predicted to include L-phenylalanine, protocatechuic acid, okanin, nicotinic acid, L-tyrosine, benzocaine, syringic acid, benzocaine, phloretic acid, cynaroside, and 3,4-dihydroxybenzaldehyde. Conclusion Betel nuts are rich in natural metabolites, and some of these metabolites can participate in the intervention of depression. In addition, the metabolites showed distinct characteristics between the kernel and peel. Therefore, it is necessary to comprehensively and rationally use betel nuts.
Collapse
Affiliation(s)
- Yunjia Yang
- School of Public Health, Hainan Medical University, Haikou, People's Republic of China
| | - Hairong Huang
- School of Public Health, Hainan Medical University, Haikou, People's Republic of China
| | - Zeying Cui
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, People's Republic of China
| | - Jun Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Guankui Du
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, People's Republic of China.,Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, People's Republic of China.,Biotechnology and Biochemisty Laboratory, Hainan Medical University, Haikou, People's Republic of China
| |
Collapse
|
6
|
Screening and Identification of the Metabolites in Rat Plasma and Urine after Oral Administration of Areca catechu L. Nut Extract by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Tandem Mass Spectrometry. Molecules 2017. [PMID: 28635656 PMCID: PMC6152711 DOI: 10.3390/molecules22061026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Areca catechu L. nut, a well-known toxic traditional herbal medicine, has been widely used to treat various diseases in China and many other Asian countries for centuries. However, to date the in vivo absorption and metabolism of its multiple bioactive or toxic components still remain unclear. In this study, liquid chromatography coupled with tandem mass spectrometry was used to analyze the major components and their metabolites in rat plasma and urine after oral administration of Areca catechu L. nut extract (ACNE). A total of 12 compounds, including 6 alkaloids, 3 tannins and 3 amino acids, were confirmed or tentatively identified from ACNE. In vivo, 40 constituents, including 8 prototypes and 32 metabolites were identified in rat plasma and urine samples. In summary, this study showed an insight into the metabolism of ACNE in vivo, which may provide helpful chemical information for better understanding of the toxicological and pharmacological profiles of ACNE.
Collapse
|