1
|
Liu F, Li M, Li W, Ren Y, Zhang M, Zhang H, Wang P, Wu Y, Wang K, Wang X, Chen X, Tang J. Peroxynitrite-activated fluorescent probe with two reaction triggers for pathological diagnosis and therapeutic evaluation of inflammation. Bioorg Chem 2024; 147:107362. [PMID: 38615474 DOI: 10.1016/j.bioorg.2024.107362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Excessive peroxynitrite (ONOO-) is closely related to the occurrence and progression of inflammation. Therefore, the development of an efficacious ONOO- activatable probe holds great potential for the early diagnosis of pathological inflammation, and the direct evaluation of the therapeutic efficacy of active protectants. In this work, a new ONOO--activated fluorescent probe (SZP) which greatly improved the specificity and sensitivity (LOD = 8.03 nM) with large Stokes shift (150 nm) through introducing two reaction triggers (diphenyl phosphinate moiety, CC unsaturated bond) was rationally designed for rapid detecting ONOO- (within 2 min). The excellent properties of probe SZP enable it to realize the fluorescence-guided diagnosis of inflammation. More importantly, probe SZP has also been utilized to assess the anti-inflammatory efficacy of traditional Chinese medicines (TCMs) active ingredients for the remediation of inflammation by monitoring ONOO- fluctuation for the first time.
Collapse
Affiliation(s)
- Feiyan Liu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Manman Li
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Weixia Li
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China; Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China.
| | - Yingjie Ren
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Pan Wang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Kehan Wang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Xiaoyan Wang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China.
| | - Jinfa Tang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China; Henan University of Chinese Medicine, Henan, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Inhibitory Activity of Quaternary Isoquinoline Alkaloids on Soluble Epoxide Hydrolase. Curr Issues Mol Biol 2022; 44:4282-4289. [PMID: 36135206 PMCID: PMC9498296 DOI: 10.3390/cimb44090294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The quaternary isoquinoline alkaloids of palmatine (1), berberine (2), and jatrorrhizine (3) were evaluated in terms of their ability to inhibit soluble epoxide hydrolase (sEH). They had similar inhibitory activities, with IC50 values of 29.6 ± 0.5, 33.4 ± 0.8, and 27.3 ± 0.4 μM, respectively. Their respective Ki values of 26.9, 46.8, and 44.5 μM—determined by enzyme kinetics—indicated that they inhibited the catalytic reaction by binding noncompetitively with sEH. The application of computational chemistry to the in vitro results revealed the site of the receptor to which the ligand would likely bind. Accordingly, three alkaloids were identified as having a suitable basic skeleton for lead compound development of sEH inhibitors.
Collapse
|
3
|
Lum PT, Sekar M, Gan SH, Jeyabalan S, Bonam SR, Rani NNIM, Ku-Mahdzir KM, Seow LJ, Wu YS, Subramaniyan V, Fuloria NK, Fuloria S. Therapeutic potential of mangiferin against kidney disorders and its mechanism of action: A review. Saudi J Biol Sci 2022; 29:1530-1542. [PMID: 35280538 PMCID: PMC8913403 DOI: 10.1016/j.sjbs.2021.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
There is a swing in research developments concerning the utilization of natural products as effective pharmacotherapeutic agents due to their comparatively lower toxicities than synthetic compounds. Among natural products, mangiferin is a natural C-glucosyl xanthonoid polyphenol with remarkable pharmacological activities. Emerging evidence indicates the therapeutic benefits of mangiferin against various kidney disorders, including renal injury, diabetic nephropathy, renal fibrosis, hyperuricemic nephropathy, and lupus nephritis, in experimental animal models. The mangiferin induced antioxidant response resulting in vital functions, such as protection against renal inflammation, inhibits renal cell apoptosis, activates autophagy, causes immunomodulation, regulates renal urate transporters and modulates cell signalling pathways. The purpose of this review provide a brief overview of the in vitro/in vivo reno-protective effect of mangiferin and the underlying mechanism(s) in protecting against kidney disorders. Understanding the pharmacological actions of mangiferin is prominence due to its excellent therapeutic potential in managing kidney disorders. Thus, in addition to this review, in-silico molecular docking is performed against nuclear factor kappa B (NF-κB) and soluble epoxide hydrolase (sEH) to study the mechanism of action of mangiferin. It is believed that mangiferin is a safe reno-protective molecule. The observed positive effects are attributed to the inhibition of inflammation caused by NF-κB and sEH upregulation and oxidative stress activation. Studies on the efficacy and safety of mangiferin in clinical trials are further warranted to confirm its medicinal potential as therapeutic agent for kidney disorders in humans.
Collapse
|
4
|
Detoxification II Prescription Suppresses the Th-17/IL-17 Inflammatory Axis to Improve the Liver Function of ACLF-Rats via Inactivating the P38MAPK Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7563383. [PMID: 34900202 PMCID: PMC8664511 DOI: 10.1155/2021/7563383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
Hepatitis is a metabolic system disease which is a serious challenge to the medical and healthcare system of the world. This study attempted to investigate the therapeutic effect and illustrate the regulation pharmacological mechanism of Detoxification II Prescription on ACLF. In this study, the rats were injected with D-galactosamine to establish ACLF-rat models, and the levels of cholinesterase (CHE), alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), and total bilirubin (TBiL) were measured with the related kits to reflect the liver functions of the rats. The levels of IL-17, IL-6, and IFN-γ in the serums of the rats were detected by qRT-PCR, and the percentages of Th-17 cells in CD4+ cells of the rats were measured by flow cytometry assay. In the results, the increased ALT, AST, TBiL, IL-6, IL-17, IFN-γ, and percentage of Th-17 cells in CD4+ and decreased ALB and CHE were found in the serums of the ACLF-rats, while Detoxification II Prescription could partly reverse those indexes of the ACLF-rats. Moreover, it was also found that Detoxification II Prescription could inhibit the expression of P38MAPK, and P38MAPK downregulation obviously improved the liver function indexes of the ACLF-rats including the levels of ALT, AST, TBiL, IL-6, IL-17, IFN-γ, and percentage of Th-17 cells in CD4+ cells. In conclusion, this study suggested that Detoxification II Prescription could suppress the Th-17/IL-17 inflammatory axis to improve the liver function of ACLF-rats via inhibiting the activity of the P38MAPK pathway.
Collapse
|
5
|
Efficacy and Mechanism of Buxue Yimu Pills () on Gynecological Anemia: A Combination of Clinical and Network Pharmacology Study. Chin J Integr Med 2021; 28:1072-1080. [PMID: 34241801 DOI: 10.1007/s11655-021-3296-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To compare the clinical efficacy and safety of oral administration of Buxue Yimu Pills (BYP, ), ferrous sulfate (FS), and the combination of BYP and FS on gynecological anemia, and investigate the mechanisms using network pharmacology. METHODS A randomized, controlled, multi-center clinical trial was conducted. Totally 150 patients with hemoglobin of 70-110 g/L due to gynecological conditions were recruited and randomized (using the block randomization method) into Buxue Yimu Pills group (24 g/d), oral iron group (FS Tablets, 0.9 g/d), and combined treatment group (BYP, 24 g/d plus FS Tablets, 0.9 g/d), 50 patients in each group. At the enrollment and 4-week treatment, complete blood count, serum iron indexes were evaluated. Adverse events, liver and renal functions, as well as blood coagulation were observed. Network pharmacology was conducted to identify the active ingredients and explore the potential mechanisms of BYP. RESULTS Ten (20%) and 7 (14%) participants discontinued the therapy due to gastrointestinal symptoms in oral iron and combination treatment groups. All 3 groups showed elevated hemoglobin. The patients in the iron group exhibited typically elevated in serum iron and ferritin and decreased in total iron-binding capacity. No change in iron indexes was observed in BYP group. The patients in the combination treatment group neither showed significant changes in serum ferritin nor total iron-binding capacity. No significant adverse reactions were observed in the BYP group. The network pharmacology identified 27 bioactive compounds and 145 targets of BYP on gynecological anemia. Biological processes and pathways including regulation of inflammation, hormone, angiogenesis and hemostasis, response to decreased oxygen levels, effects on myeloma cell, and response to metal ions were identified. CONCLUSION BYP contributes to the practical improvement on gynecological anemia potentially through multi-target mechanisms and optimized iron re-distribution. (Trial registration: No. NCT03232554).
Collapse
|
6
|
Das Mahapatra A, Choubey R, Datta B. Small Molecule Soluble Epoxide Hydrolase Inhibitors in Multitarget and Combination Therapies for Inflammation and Cancer. Molecules 2020; 25:molecules25235488. [PMID: 33255197 PMCID: PMC7727688 DOI: 10.3390/molecules25235488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The enzyme soluble epoxide hydrolase (sEH) plays a central role in metabolism of bioactive lipid signaling molecules. The substrate-specific hydrolase activity of sEH converts epoxyeicosatrienoic acids (EETs) to less bioactive dihydroxyeicosatrienoic acids. EETs exhibit anti-inflammatory, analgesic, antihypertensive, cardio-protective and organ-protective properties. Accordingly, sEH inhibition is a promising therapeutic strategy for addressing a variety of diseases. In this review, we describe small molecule architectures that have been commonly deployed as sEH inhibitors with respect to angiogenesis, inflammation and cancer. We juxtapose commonly used synthetic scaffolds and natural products within the paradigm of a multitarget approach for addressing inflammation and inflammation induced carcinogenesis. Structural insights from the inhibitor complexes and novel strategies for development of sEH-based multitarget inhibitors are also presented. While sEH inhibition is likely to suppress inflammation-induced carcinogenesis, it can also lead to enhanced angiogenesis via increased EET concentrations. In this regard, sEH inhibitors in combination chemotherapy are described. Urea and amide-based architectures feature prominently across multitarget inhibition and combination chemotherapy applications of sEH inhibitors.
Collapse
Affiliation(s)
- Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Rinku Choubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Correspondence: ; Tel.: +079-2395-2073; Fax: +079-2397-2622
| |
Collapse
|
7
|
Kpemissi M, Eklu-Gadegbeku K, Veerapur VP, Negru M, Taulescu M, Chandramohan V, Hiriyan J, Banakar SM, Nv T, Suhas DS, Puneeth TA, Vijayakumar S, Metowogo K, Aklikokou K. Nephroprotective activity of Combretum micranthum G. Don in cisplatin induced nephrotoxicity in rats: In-vitro, in-vivo and in-silico experiments. Biomed Pharmacother 2019; 116:108961. [PMID: 31146106 DOI: 10.1016/j.biopha.2019.108961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023] Open
Abstract
Nephrotoxicity is known to be a major complication during cisplatin chemotherapy in cancer patients. In the present study, the protective effect of a hydroalcoholic extract of Combretum micranthum (CM) against cisplatin (CP)-induced renal damage was evaluated using in-vitro human embryonic kidney (HEK)-293 cells and in-vivo experiments. Further, in-silico molecular docking and dynamic experiments were carried out with bioactive compounds of the title plant against nuclear factor kappa B (NF-κB) and soluble epoxide hydrolase (sEH). Incubation of HEK-293 cells with cisplatin resulted in a significant increase in cell death with changes in normal cellular morphology. Co-treatment of HEK-293 cells with CP and CM extract at varying concentrations resulted in significant enhancement of cell growth compared to CP treatment indicating the cytoprotective activity of CM with an EC50 8.136 μg/mL. In vivo nephroprotective activity was evaluated by administering CM (200 and 400 mg/kg, p.o) to rats for 10 days followed by single intraperitonial injection of CP (7.5 mg/kg) on the 5th day of the experiment. Nephrotoxicity induced by CP was apparent by elevated levels of serum and urine kidney function markers, transaminases, oxidative stress markers and histopathological alterations in kidney. Pre-treatment with CM normalized the renal function at both the doses by ameliorating the CP-induced renal damage markers, oxidative stress and histopathological variations. In-silico studies showed that, out of the thirty bioactive compounds, isovitexin and gallic acid exhibited a higher docking score of -22.467, -21.167 kcal/mol against NF-κB. Cianidanol and epicatechin exhibited a higher docking score of -14.234, -14.209 kcal/mol against sEH. The protective effect of CM extract in CP-induced nephrotoxicity might be attributed to its antioxidant, anti-inflammatory activity by inhibiting NF-κB and sEH upregulation.
Collapse
Affiliation(s)
- Mabozou Kpemissi
- Faculty of Sciences, University of Lomé, Togo; University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania; Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur, 572 102, Karnataka, India.
| | | | - Veeresh P Veerapur
- Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur, 572 102, Karnataka, India.
| | - Mihai Negru
- University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania
| | - Marian Taulescu
- University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, 572103, Karnataka, India
| | - Jagadheshan Hiriyan
- Anthem Biosciences Pvt. Ltd., Industrial Area Phase I, Bommasandra, Hosur Road, Bangalore, 560099, India
| | - Siddalingesh M Banakar
- Anthem Biosciences Pvt. Ltd., Industrial Area Phase I, Bommasandra, Hosur Road, Bangalore, 560099, India
| | - Thimmaiah Nv
- Anthem Biosciences Pvt. Ltd., Industrial Area Phase I, Bommasandra, Hosur Road, Bangalore, 560099, India
| | | | | | | | | | | |
Collapse
|
8
|
Li H, Gong X, Wang Z, Pan C, Zhao Y, Gao X, Liu W. Multiple fingerprint profiles and chemometrics analysis of polysaccharides from Sarcandra glabra. Int J Biol Macromol 2018; 123:957-967. [PMID: 30445090 DOI: 10.1016/j.ijbiomac.2018.11.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 01/11/2023]
Abstract
Multiple techniques including high performance size-exclusion chromatography (HPSEC), Fourier-transform infrared spectroscopy (FT-IR) and pre-column derivatization high-performance liquid chromatography (PCD-HPLC) were applied to the fingerprint analysis of the polysaccharides from Sarcandra glabra (SGPs) in different regions. Chemometrics was used to evaluate the similarity and differences of SGPs from different regions based on their fingerprints. The results of the present study showed that polysaccharides from 18 batches of Sarcandra glabra had a high degree of similarity based on the HPSEC, PCD-HPLC, and FT-IR fingerprints. The samples from different regions could be classified by clustering analysis based on their nuances. The five monosaccharides (Gal, Rha, Xyl, GlcA, and Glc) and the wavelengths of FT-IR (3371 cm-1 and 1411 cm-1) could be selected as herb markers for the quality control of Sarcandra glabra.
Collapse
Affiliation(s)
- Huan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xingqun Gong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zichen Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yang Zhao
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, United States
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Identification of a Multicomponent Traditional Herbal Medicine by HPLC-MS and Electron and Light Microscopy. Molecules 2017; 22:molecules22122242. [PMID: 29244753 PMCID: PMC6150010 DOI: 10.3390/molecules22122242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Commercial pharmaceutical herbal products have enabled people to take traditional Chinese medicine (TCM) in a convenient and accessible form. However, the quantity and quality should be additionally inspected. To address the issue, a combination of chemical and physical inspection methods were developed to evaluate the amount of an herbal formula, Xiang-Sha-Liu-Jun-Zi-Tang (XSLJZT), in clinical TCM practice. Methods: A high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS) method with electrospray ionization was developed to measure the herbal biomarkers of guanosine, atractylenolide III, glycyrrhizic acid, dehydrocostus lactone, hesperidin, and oleanolic acid from XSLJZT. Scanning electron microscopy (SEM) photographs and light microscopy photographs with Congo red and iodine–KI staining were used to identify the cellulose fibers and starch content. Furthermore, solubility analysis, swelling power test, and crude fiber analysis were contributed to measure the starch additive in pharmaceutical products. Results: The results demonstrated large variations in the chemical components of different pharmaceutical brands. The SEM photographs revealed that the starch was oval, smooth, and granular, and that the raw herbal powder appears stripy, stretched, and filiform. The stained light microscopy photographs of all of the pharmaceutical products showed added starch and raw herbal powder as extenders. Conclusion: The developed chemical and physical methods provide a standard operating procedure for the quantity control of the herbal pharmaceutical products of XSLJZT.
Collapse
|