1
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
2
|
Hernández-Caracheo K, Guerrero-López L, Rodríguez-Sánchez B, Rodríguez-Núñez E, Rodríguez-Chávez JL, Delgado-Lamas G, Campos-Guillén J, Amaro-Reyes A, Monroy-Dosta MDC, Zavala-Gómez CE, Chaparro-Sánchez R, Rodríguez-Morales JA, Pérez-Moreno V, Ramos-López MA. Evaluation of the Insecticidal Potential of Heterotheca inuloides Acetonic and Methanolic Extracts against Spodoptera frugiperda and Their Ecotoxicological Effect on Poecilia reticulata. PLANTS (BASEL, SWITZERLAND) 2023; 12:3555. [PMID: 37896019 PMCID: PMC10610112 DOI: 10.3390/plants12203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
For the management of Spodoptera frugiperda, botanical extracts have been used to reduce the environmental impacts of synthetic chemical pesticides. In the present investigation, the insecticidal activity of the acetonic and methanolic extracts of Heterotheca inuloides (Asteraceae) and of the main compound 7-hydroxy-3,4-dihydrocadalene on this pest as well as its ecotoxicological effect on Poecilia reticulata were evaluated. A greater insecticidal response was obtained from the acetonic extracts than from the methanolic extracts, with LC50 values of 730.4 ppm and 711.7 ppm for samples 1 and 2, respectively. Similarly, there was a lethal effect on 50% of the P. reticulata population at low concentrations in the acetonic extract compared to the methanolic extract. The sesquiterpene 7-hydroxy-3,4-dihydrocadalene has greater insecticidal activity by presenting an LC50 of 44.36 ppm; however, it is classified as moderately toxic for guppy fish.
Collapse
Affiliation(s)
- Karla Hernández-Caracheo
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Lina Guerrero-López
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Benjamín Rodríguez-Sánchez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Enrique Rodríguez-Núñez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - José Luis Rodríguez-Chávez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
- Ceickor University Center, Bernal Highway, Access to Ezequiel Montes Montes Km. 3, Los Benitos, CP., Queretaro 76299, Mexico
| | | | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Aldo Amaro-Reyes
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - María del Carmen Monroy-Dosta
- Man and His Environment Department, Metropolitan Autonomous University Xochimilco Unit, Calzada del Hueso 1100, Coyoacan, Mexico City 04960, Mexico
| | - Carlos Eduardo Zavala-Gómez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Ricardo Chaparro-Sánchez
- Faculty of Informatics, Autonomous University of Queretaro, Av. de las Ciencias s/n, Juriquilla 76101, Mexico
| | | | - Víctor Pérez-Moreno
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Miguel Angel Ramos-López
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| |
Collapse
|
3
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Mendoza-Fuentes A, González-Burgos E, Aparicio Trejo OE, Delgado-Lamas G, Rodríguez-Chávez JL, Pedraza-Chaverri J, Gómez-Serranillos MP, Araiza-Olivera D. The cytotoxicity effect of 7-hydroxy-3,4-dihydrocadalene from Heterotheca inuloides and semisynthetic cadalenes derivates towards breast cancer cells: involvement of oxidative stress-mediated apoptosis. PeerJ 2023; 11:e15586. [PMID: 37361049 PMCID: PMC10289085 DOI: 10.7717/peerj.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Heterotheca inuloides, traditionally employed in Mexico, has demonstrated anticancer activities. Although it has been proven that the cytotoxic effect is attributed to cadinane-type sesquiterpenes such as 7-hydroxy-3,4-dihydrocadalene, the mechanism of action by which these agents act in tumor lines and their regulation remain unknown. This study was undertaken to investigate for first time the cytotoxic activity and mechanism of action of 7-hydroxy-3,4-dihydrocadalene and two semi-synthetic cadinanes derivatives towards breast cancer cells. Methods Cell viability and proliferation were assayed by thiazolyl blue tetrazolium bromide (MTT) assay and Trypan blue dye exclusion assay. Cell migration measure was tested by wound-healing assay. Moreover, the reactive oxygen species (ROS) and lipid peroxidation generation were measured by 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay and thiobarbituric acid reactive substance (TBARS) assay, respectively. Furthermore, expression of caspase-3, Bcl-2 and GAPDH were analyzed by western blot. Results The results showed that 7-hydroxy-3,4-dihydrocadalene inhibited MCF7 cell viability in a concentration and time dependent manner. The cytotoxic potency of semisynthetic derivatives 7-(phenylcarbamate)-3,4-dihydrocadalene and 7-(phenylcarbamate)-cadalene was remarkably lower. Moreover, in silico studies showed that 7-hydroxy-3,4-dihydrocadalene, and not so the semi-synthetic derivatives, has optimal physical-chemical properties to lead a promising cytotoxic agent. Further examination on the action mechanism of 7-hydroxy-3,4-dihydrocadalene suggested that this natural product exerted cytotoxicity via oxidative stress as evidenced in a significantly increase of intracellular ROS levels and in an induction of lipid peroxidation. Furthermore, the compound increased caspase-3 and caspase-9 activities and slightly inhibited Bcl-2 levels. Interestingly, it also reduced mitochondrial ATP synthesis and induced mitochondrial uncoupling. Conclusion Taken together, 7-hydroxy-3,4-dihydrocadalene is a promising cytotoxic compound against breast cancer via oxidative stress-induction.
Collapse
Affiliation(s)
- Alan Mendoza-Fuentes
- Institute of Chemistry, Universidad Nacional Autónoma de México, México City, México
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | | | | | | | - José Pedraza-Chaverri
- Departament of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, México City, México
| | - M. Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Daniela Araiza-Olivera
- Institute of Chemistry, Universidad Nacional Autónoma de México, México City, México
- Fox Chase Cancer Center, Philadelphia, United States
| |
Collapse
|
5
|
Parafiniuk A, Kromer K, Fleszar MG, Kreitschitz A, Wiśniewski J, Gamian A. Localization of Sesquiterpene Lactones Biosynthesis in Flowers of Arnica Taxa. Molecules 2023; 28:molecules28114379. [PMID: 37298857 DOI: 10.3390/molecules28114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Arnica montana is a valuable plant with high demand on the pharmaceutical and cosmetic market due to the presence of helenalin (H) and 11α, 13-dihydrohelenalin (DH) sesquiterpene lactones (SLs), with many applications and anti-inflammatory, anti-tumor, analgesic and other properties. Despite the great importance of these compounds for the protection of the plant and their medicinal value, the content of these lactones and the profile of the compounds present within individual elements of florets and flower heads have not been studied so far, and attempts to localize these compounds in flower tissues have also not been conducted. The three studied Arnica taxa synthesize SLs only in the aerial parts of plants, and the highest content of these substances was found in A. montana cv. Arbo; it was lower in wild species, and a very small amount of H was produced by A. chamissonis. Analysis of dissected fragments of whole inflorescences revealed a specific distribution pattern of these compounds. The lactones content in single florets increased from the top of the corolla to the ovary, with the pappus calyx being a significant source of their production. Histochemical tests for terpenes and methylene ketones indicated the colocalization of lactones with inulin vacuoles.
Collapse
Affiliation(s)
- Agata Parafiniuk
- Laboratory of Tissue Cultures, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Krystyna Kromer
- Laboratory of Tissue Cultures, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
| | - Mariusz G Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Agnieszka Kreitschitz
- Department of Plant Development Biology, Faculty of Biological Sciences, University of Wroclaw, ul. Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
6
|
Hao DC, Lyu HY, Wang F, Xiao PG, Xiao PG. Evaluating Potentials of Species Rich Taxonomic Groups in Cosmetics and Dermatology: Clustering and Dispersion of Skin Efficacy of Asteraceae and Ranunculales Plants on the Species Phylogenetic Tree. Curr Pharm Biotechnol 2023; 24:279-298. [PMID: 35331107 DOI: 10.2174/1389201023666220324123926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The medicinal properties of plants can be predicted by virtue of phylogenetic methods, which nevertheless have not been utilized to explore the regularity of skin-related bioactivities of ethnomedicinal plants. We aim to investigate the distribution of skin efficacy of Asteraceae and Ranunculales plants on the species-level Tree of Life. METHODS The clinical efficacy data of 551 ethnomedicinal species belonging to Ranunculales, as well as 579 ethnomedicinal species of Asteraceae, were systematically collected and collated; these therapeutic data fell into 15 categories, including skin disease/cosmeceutical. The large phylogenetic tree of all China angiosperm species was used to detect the phylogenetic signals of ethnomedicinal plants by calculating the D statistic, phylogenetic diversity (PD), net relatedness index (NRI), and nearest taxon index (NTI). Of all Chinese ethnomedicinal plants of Ranunculales and Asteraceae, 339 (61.5% of all ethnomedicinal species) and 382 (66.0% of all) are used for skin problems. In Ranunculales, a clustered structure was suggested by the NRI value for skin uses. In Asteraceae, the skin utility was not clustered; Artemisia, Aster, Cremanthodium, Ligularia, and Saussurea are the most used Asteraceae genera for skin issues. RESULTS The clustering structure was identified in Artemisia, and the skin efficacy in other genera was of overdispersion (NRI < 0). NTI values and D statistics largely agree with NRI. When compared with PD values of different therapeutic categories, the PD value of the skin category was relatively high in Cremanthodium, Ranunculales, Asteraceae, and Artemisia, suggesting the enormous efficacy space in the new taxa of these taxonomic groups. CONCLUSION By resolving the distribution of therapeutic effects of Ranunculales/Asteraceae taxa, the importance of phylogenetic methods in mining botanical resources with skin utilities is validated.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China.,Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Huai-Yu Lyu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Fan Wang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Lax P, Passone MA, Becerra AG, Sosa AL, Ciancio A, Finetti-Sialer MM, Rosso LC. Sustainable strategies for management of the "false root-knot nematode" Nacobbus spp. FRONTIERS IN PLANT SCIENCE 2022; 13:1046315. [PMID: 36570909 PMCID: PMC9774502 DOI: 10.3389/fpls.2022.1046315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The genus Nacobbus, known as the false root-knot nematode, is native to the American continent and comprises polyphagous species adapted to a wide range of climatic conditions. Alone or in combination with other biotic and abiotic factors, Nacobbus spp. can cause significant economic yield losses on main food crops such as potato, sugar beet, tomato, pepper and bean, in South and North America. Although the genus distribution is restricted to the American continent, it has quarantine importance and is subject to international legislation to prevent its spread to other regions, such as the European Union. The management of Nacobbus spp. remains unsatisfactory due to the lack of information related to different aspects of its life cycle, survival stages in the soil and in plant material, a rapid and reliable diagnostic method for its detection and the insufficient source of resistant plant genotypes. Due to the high toxicity of chemical nematicides, the search for alternatives has been intensified. Therefore, this review reports findings on the application of environmentally benign treatments to manage Nacobbus spp. Biological control strategies, such as the use of different organisms (mainly bacteria, fungi and entomopathogenic nematodes) and other eco-compatible approaches (such as metabolites, essential oils, plant extracts, phytohormones and amendments), either alone or as part of a combined control strategy, are discussed. Knowledge of potential sources of resistance for genetic improvement for crops susceptible to Nacobbus spp. are also reported. The sustainable strategies outlined here offer immediate benefits, not only to counter the pathogen, but also as good alternatives to improve crop health and growth.
Collapse
Affiliation(s)
- Paola Lax
- Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Centro de Zoología Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - María A. Passone
- Laboratorio de Ecología Microbiana Ambiental (ECOMA), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto, Argentina
| | - Alejandra G. Becerra
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ana L. Sosa
- Laboratorio de Ecología Microbiana Ambiental (ECOMA), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto, Argentina
| | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | | | - Laura C. Rosso
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| |
Collapse
|
8
|
Elizondo-Luévano JH, Gomez-Flores R, Verde-Star MJ, Tamez-Guerra P, Romo-Sáenz CI, Chávez-Montes A, Rodríguez-Garza NE, Quintanilla-Licea R. In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212862. [PMID: 36365315 PMCID: PMC9659118 DOI: 10.3390/plants11212862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 05/14/2023]
Abstract
Medicinal plants are traditionally used in Mexico to treat diseases such as cancer. The present study aimed to evaluate the cytotoxic, antioxidant, and anti-hemolytic activity of 15 plants of ethnopharmacological use in Mexico. For this, plant methanol extracts were prepared by the Soxhlet method, after which their cytotoxic activity was evaluated against human hepatocellular carcinoma (HEP-G2) and monkey kidney epithelial (Vero) cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction colorimetric assay. The selectivity index (SI) of each extract was then determined by the IC50 ratio of normal to tumor cells. We showed that Ruta chalepensis extract possessed an IC50 of 1.79 µg/mL and 522.08 µg/mL against HEP-G2 and Vero cells, respectively, resulting in an SI of 291.50. Furthermore, antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging technique, where the best antioxidant potential was shown by the Heterotheca inuloides extract (IC50 = 19.24 µg/mL). Furthermore, the hemolytic potential was determined against human erythrocytes, which showed that the extracts with the highest anti-hemolytic activity were Smilax aspera (IC50 = 4.41 µg/mL) and Amphipterygium adstringens (IC50 = 5.35 µg/mL). In conclusion, we observed that R. chalepensis methanol extract possesses cytotoxic activity against HEP-G2 cells, without affecting non-tumorigenic Vero cells. Our results indicated the antitumor potential of medicinal plants used in Mexico.
Collapse
Affiliation(s)
- Joel H. Elizondo-Luévano
- Departamento de Química, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
- Correspondence: (R.G.-F.); (R.Q.-L.); Tel.: +52-81-8020-7449 (R.G.-F.); +52-81-8376-3668 (ext. 1476) (R.Q.-L.)
| | - María J. Verde-Star
- Departamento de Química, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
| | - César I. Romo-Sáenz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
| | - Abelardo Chávez-Montes
- Departamento de Química, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
| | - Nancy E. Rodríguez-Garza
- Departamento de Química, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
| | - Ramiro Quintanilla-Licea
- Departamento de Química, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, N.L., Monterrey 66455, Mexico
- Correspondence: (R.G.-F.); (R.Q.-L.); Tel.: +52-81-8020-7449 (R.G.-F.); +52-81-8376-3668 (ext. 1476) (R.Q.-L.)
| |
Collapse
|
9
|
Vargas-León EA, Soto-Islas M, Díaz-Batalla L, Cortes-López H, Castro-Rosas J, Gómez-Aldapa CA. In vitro screening of Mexican arnica (Heterotheca inuloides Cass.) inhibitory activity of the angiotensin converting enzyme as a hypotensive mechanism. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Willer J, Zidorn C, Juan-Vicedo J. Ethnopharmacology, phytochemistry, and bioactivities of Hieracium L. and Pilosella Hill (Cichorieae, Asteraceae) species. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114465. [PMID: 34358652 DOI: 10.1016/j.jep.2021.114465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of the genera Hieracium and Pilosella have been used in folk medicine for centuries in many parts of the world. The most wiedly used species is P. officinarum Vaill., included in the British and French Pharmacopoeias and sold as part of different commercial products. AIM OF THE STUDY This review critically appraises the state-of-art of ethnopharmacology, specialised metabolites, bioactivities, and toxicity of members of Hieracium and Pilosella. Thus, gaps in scientific knowledge can be identified, also focusing on the development of products with pharmacological applications. MATERIALS AND METHODS Literature data of Hieracium and Pilosella species were mainly retrieved using different electronic databases such as Web of Science, Google Scholar, SciFinder, and PubMed. Other electronic resources included worldwide databases on ethnobotany, ethnopharmacology, and phytochemistry as well as government reports. Additionally, ancient texts and local information such as PhD and MSc theses, and books were consulted. RESULTS A comprehensive analysis of the above mentioned sources revealed that only 34 out of the about 850 described species within the genera Hieracium and Pilosella have been reported in the context of traditional medicinal and ethnobotanical knowledge. The most often mentioned species is P. officinarum which has been widely used due to its diuretic effects. Other popular uses of Hieracium and Pilosella species include the treatment of skin, gastric, and intestinal diseases as well as respiratory and vascular ailments. Moreover, taxa of the two genera have been used as antiobiotics, antiseptics, antidiabetics, tonics, antiepileptics, antiphlogistics, emetics, wound healing drugs, astringents, haemostatics, and detoxificants. Finally, uses as a wild vegetable, fodder, plant for hunting and for charming rituals have also been mentioned. Phytochemical research revealed a richness in phenolic compounds and flavonoids. Moreover, coumarins, sesquiterpene lactones, terpenoids, and phytosterols were found in Hieracium and Pilosella. Experimental research conducted to support traditional uses mainly include in vitro tests, while assays based on in vivo models (including humans) are rather limited. Also, the vast majority of the studies did not identify the compounds responsible for the detected bioactivities. These established bioactivities include antidiabetic, anti-inflammatory, antibacterial, antimycotic, antiviral, cytotoxic and antiproliferative, diuretic, gastroprotective, antiepileptic, hypotensive, anti-obesity, arthropodicidal, and skin rejuvenating activities. Finally, limited toxicity studies have been conducted on members of Hieracium and Pilosella. CONCLUSION Taxa belonging to Hieracium and Pilosella have been confirmed to exert diuretic, anti-inflammatory, and antimicrobial effects, which is in line with their long traditional use. Moreover, the above mentioned fields of application hint to the most promising routes for the development of new marketable products. Nonetheless, additional data from an in-depth research on bio-active specialised metabolites such as sesquiterpenoids, sesquiterpene lactones, and coumarines, their bioactivities and toxicity, and their biosynthesis are still warranted.
Collapse
Affiliation(s)
- Johanna Willer
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| | - Jorge Juan-Vicedo
- Instituto de Investigación en Medio Ambiente y Ciencia Marina IMEDMAR, Universidad Católica de Valencia, Calle Guillem de Castro, 94, 'San Vicente Mártir', 46001, València, Spain.
| |
Collapse
|
11
|
Sherban A, Wang JV, Geronemus RG. Growing role for arnica in cosmetic dermatology: Lose the bruise. J Cosmet Dermatol 2021; 20:2062-2068. [PMID: 33930256 DOI: 10.1111/jocd.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/01/2022]
Abstract
This commentary examines the utility of arnica in cosmetic dermatology. For many years, arnica has been used to reduce the morbidity associated with various procedures, including surgeries and treatments with lasers and other energy-based devices. Arnica is a traditional homeopathic remedy that can reduce post-procedural edema and bruising. Although it has been used clinically by many physicians and is widely and readily available to patients, the available data is limited and often conflicting. We reviewed the relevant information on arnica and offer our own insights into its use in order to shed more light on its periprocedural utility.
Collapse
Affiliation(s)
- Alexander Sherban
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jordan V Wang
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Laser & Skin Surgery Center of New York, New York, NY, USA
| | | |
Collapse
|
12
|
Quiñonez-Bastidas GN, Navarrete A. Mexican Plants and Derivates Compounds as Alternative for Inflammatory and Neuropathic Pain Treatment-A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050865. [PMID: 33923101 PMCID: PMC8145628 DOI: 10.3390/plants10050865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/17/2023]
Abstract
Despite the availability of many anti-pain drugs, in the form of NSAIDs, steroids, gabapentinoids, opioids, and antidepressants, in this study we address the natural compounds belonging to the group of Mexican medicinal plants or "Mexican folk medicine", used for pain management in Mexico. Our interest in this subject is due to the growing idea that "natural is harmless" and to the large number of side effects exhibited in pharmacotherapy. The objective of this review was to document the scientific evidence about Mexican medicinal plants and their derivatives used for inflammatory and neuropathic pain treatment, as well as the mechanisms of action implicated in their antinociceptive effects, their possible adverse effects, and the main pharmacological aspects of each plant or compound. Our data review suggested that most studies on Mexican medicinal plants have used inflammatory experimental models for testing. The anti-pain properties exerted by medicinal plants lack adverse effects, and their toxicological assays report that they are safe to consume; therefore, more studies should be performed on preclinical neuropathic pain models. Moreover, there is no convincing evidence about the possible mechanisms of action involved in the anti-pain properties exerted by Mexican plants. Therefore, the isolation and pharmacological characterization of these plant derivatives' compounds will be important in the design of future preclinical studies.
Collapse
Affiliation(s)
| | - Andrés Navarrete
- Correspondence: (G.N.Q.-B.); (A.N.); Tel.: +52-5556225291 (A.N.)
| |
Collapse
|
13
|
Namdeo AG, Boddu SHS, Amawi H, Ashby CR, Tukaramrao DB, Trivedi P, Babu RJ, Tiwari AK. Flavonoids as Multi-Target Compounds: A Special Emphasis on their Potential as Chemo-adjuvants in Cancer Therapy. Curr Pharm Des 2020; 26:1712-1728. [PMID: 32003663 DOI: 10.2174/1381612826666200128095248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Flavonoids are low molecular weight, polyphenolic phytochemicals, obtained from secondary metabolism of various plant compounds. They have a spectrum of pharmacological efficacies, including potential anticancer efficacy. Natural flavonoids are present in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. Flavonoids can attenuate or inhibit the initiation, promotion and progression of cancer by modulating various enzymes and receptors in diverse pathways that involve cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis. Furthermore, in vitro, flavonoids have been shown to reverse multidrug resistance when used as chemo-adjuvants. Flavonoids (both natural and synthetic analogues) interact with several oncogenic targets through dependent and independent mechanisms to mediate their anticancer efficacy in different types of cancer cells.
Collapse
Affiliation(s)
- Ajay G Namdeo
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Haneen Amawi
- Department of Pharmacy practice, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, United States
| | - Diwakar B Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| | - Piyush Trivedi
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| |
Collapse
|
14
|
Dose-Dependent Behavioral and Antioxidant Effects of Quercetin and Methanolic and Acetonic Extracts from Heterotheca inuloides on Several Rat Tissues following Kainic Acid-Induced Status Epilepticus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5287507. [PMID: 31949879 PMCID: PMC6939434 DOI: 10.1155/2019/5287507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Kainic acid (KA) has been used to study the neurotoxicity induced after status epilepticus (SE) due to activation of excitatory amino acids with neuronal damage. Medicinal plants can protect against damage caused by KA-induced SE; in particular, organic extracts of Heterotheca inuloides and its metabolite quercetin display antioxidant activity and act as hepatoprotective agents. However, it is unknown whether these properties can protect against the hyperexcitability underlying the damage caused by KA-induced SE. Our aim was to study the protective effects (with regard to behavior and antioxidant activity) of administration of natural products methanolic (ME) and acetonic (AE) extracts and quercetin (Q) from H. inuloides at doses of 30 mg/kg (ME30, AE30, and Q30 groups), 100 mg/kg (ME100, AE100, and Q100 groups), and 300 mg/kg (ME300, AE300, and Q300 groups) against damage in brain regions of male Wistar rats treated with KA. We found dose-dependent effects on behavioral and biochemical studies in the all-natural product groups vs. the control group, with decreases in seizure severity (Racine's scale) and increases in seizure latency (p < 0.05 in the ME100, AE100, Q100, and Q300 groups and p < 0.01 in the AE300 and ME300 groups); on lipid peroxidation and carbonylated proteins in all brain tissues (p < 0.0001); and on GPx, GR, CAT, and SOD activities with all the treatments vs. KA (p ≤ 0.001). In addition, there were strong negative correlations between carbonyl levels and latency in the group treated with KA and in the group treated with methanolic extract in the presence of KA (r = ‐0.9919, p = 0.0084). This evidence suggests that organic extracts and quercetin from H. inuloides exert anticonvulsant effects via direct scavenging of reactive oxygen species (ROS) and modulation of antioxidant enzyme activity.
Collapse
|
15
|
Rodríguez-Chávez JL, Méndez-Cuesta CA, Ramírez-Apan T, Egas V, Ávila JL, Neira-González A, Hernández T, Espinosa-García FJ, Delgado G. Chemo-sensitizing activity of natural cadinanes from Heterotheca inuloides in human uterine sarcoma cells and their in silico interaction with ABC transporters. Bioorg Chem 2019; 91:103091. [PMID: 31319298 DOI: 10.1016/j.bioorg.2019.103091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
Sensitizing activities exerted by 3,4-dihydro-7-hydroxycadalene (1), rac-3,7-dihydroxy-3(4H)-isocadalen-4-one (4) and (1R,4R)-4H-1,2,3,4-tetrahydro-1-hydroxycadalen-15-oic acid (9), the major cadinanes isolated from Heterotheca inuloides, towards multidrug-resistant MES-SA/MX2 and parental MES-SA epithelial human uterine sarcoma cell lines were evaluated. We also evaluated the in silico interactions (expressed as ΔGbinding in kcal/mol) of cadinanes 1, 4 and 9 in an in vitro assay, and also tested several structurally related natural compounds with the multidrug resistance protein (MDR1, P-glycoprotein), human multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP) structures as pharmacological targets using AutoDock and AutoDock Vina. Compound 1 potentiated the cytotoxicity of doxorubicin and mitoxantrone drugs in resistant MES-SA/MX2 cells, compared to cells treated with each drug alone. Compound 1 could reverse the resistance to doxorubicin 12.44 fold at a concentration of 5 μM. It also re-sensitized cells to mitoxantrone 3.94 fold. Hence, compound 1 may be considered as a potential chemosensitizing agent to overcome multidrug resistance in cancer. The docking analysis suggested that there are interactions between cadinanes from H. inuloides and MDR1, MRP1, and BCRP proteins mainly through π-π interactions and hydrogen bonds.
Collapse
Affiliation(s)
- José Luis Rodríguez-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Carlos A Méndez-Cuesta
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Verónica Egas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - José Luis Ávila
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Adriana Neira-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Tzasna Hernández
- FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Estado de México, Mexico
| | - Francisco J Espinosa-García
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Ex Hacienda de San José de la Huerta 58190, Morelia, Michoacán, Mexico
| | - Guillermo Delgado
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
16
|
Athayde AED, Richetti E, Wolff J, Lusa MG, Biavatti MW. “Arnicas” from Brazil: comparative analysis among ten species. REVISTA BRASILEIRA DE FARMACOGNOSIA 2019. [DOI: 10.1016/j.bjp.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Salazar-Gómez A, Sánchez-Chávez AC, Zepeda-Vallejo G, Chamorro-Cevallos G, Garduño-Siciliano L, Vargas-Díaz E. Hypolipidemic Effect of Trixis angustifoliaAqueous Extract on Triton WR-1339- and High-Fat Diet-Induced Hyperlipidemic Mice. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19864218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to evaluate the hypolipidemic effect of Trixis angustifolia aqueous extract (TxAE) on Triton WR-1339- and high-fat diet-induced hyperlipidemic mice. In the Triton model, treatment with TxAE at 100 and 200 mg/kg body weight produced a significant decrease in triglycerides and very low-density lipoprotein levels and a significant increase in high-density lipoprotein (HDL). Similarly, administration of TxAE along with the high-fat diet induced a significant decrease in serum total cholesterol, low-density lipoproteins, and increase in HDL. In addition, a phytochemical study of TxAE led to the isolation of 2 previously described compounds: pebrellin and xanthomicrol. This is the first time that these compounds have been identified in a plant extract with hypolipidemic effect. The results suggest the possible therapeutic potential of TxAE as a hypolipidemic agent supporting the usage of T. angustifolia as a traditional medicine.
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Laboratorio de toxicología de productos naturales, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anahí C. Sánchez-Chávez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gerardo Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de toxicología de productos naturales, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leticia Garduño-Siciliano
- Laboratorio de toxicología de productos naturales, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elena Vargas-Díaz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
18
|
Mata R, Figueroa M, Navarrete A, Rivero-Cruz I. Chemistry and Biology of Selected Mexican Medicinal Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 108:1-142. [PMID: 30924013 DOI: 10.1007/978-3-030-01099-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herbal medicines are an integral element of alternative medical care in Mexico, and the best testimony to their efficacy and cultural value is their persistence in contemporary Mexican marketplaces where the highest percentages of medicinal and aromatic plants are sold. This chapter summarizes current trends in research on medicinal plants in Mexico, with emphasis on work carried out at the authors' laboratories. The most relevant phytochemical and pharmacological profiles of a selected group of plants used widely for treating major national health problems are described.From this contribution, it is evident that in the last five decades a significant amount of research on medicinal plants has been performed by Mexican scientists. Such efforts have led to the publication of many research papers in noted peer-reviewed journals and technical books. The isolation and structural characterization of hundreds of bioactive secondary metabolites have been accomplished, and most importantly, these studies have tended to support the ethnomedical uses of many different species. A multidisciplinary approach for investigating these plants has led to an increased emphasis on areas such as phytopharmacology, phytotoxicology, quality control, regulation, and conservation issues for these valuable resources. The medicinal plants analyzed so far have shown a very broad chemical diversity of their constituents, which have a high potential for exhibiting novel mechanistic effects biologically. The chapter shows also that there is need to conduct additional clinical studies on herbal drugs, in particular because the longstanding traditional evidence for their safety is not always sufficient to assure their rational use. There is also need to move to "omics" approaches for investigating the holistic effect and the influence of groups of phytochemicals on the whole organism. Mexican scientists may be expected to have bright prospects in this regard, which will imbue medicinal plant research with a new dynamism in the future.
Collapse
Affiliation(s)
- Rachel Mata
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Andrés Navarrete
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Isabel Rivero-Cruz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
19
|
Odeyemi S, Bradley G. Medicinal Plants Used for the Traditional Management of Diabetes in the Eastern Cape, South Africa: Pharmacology and Toxicology. Molecules 2018; 23:molecules23112759. [PMID: 30366359 PMCID: PMC6278280 DOI: 10.3390/molecules23112759] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
The use of medicinal plants for the management of diabetes mellitus is on the rise in the developing countries, including South Africa. There is increasing scientific evidence that supports the claims by the traditional healers. In this review, we compare the families of previously reported anti-diabetic plants in the Eastern Cape by rating the anti-diabetic activity, mode of action and also highlight their therapeutic potentials based on the available evidence on their pharmacology and toxicity. Forty-five plants mentioned in ethnobotanical surveys were subjected to a comprehensive literature search in the available electronic databases such as PubMed, ScienceDirect, Google Scholar and Elsevier, by using “plant name” and “family” as the keywords for the primary searches to determine the plants that have been scientifically investigated for anti-diabetic activity. The search returned 25 families with Asteraceae highly reported, followed by Asphodelaceae and Alliaceae. Most of the plants have been studied for their anti-diabetic potentials in vivo and/or in vitro, with most of the plants having a higher percentage of insulin release and inhibition against carbohydrate digesting enzymes as compared with insulin mimetic and peripheral glucose uptake. Almost all the investigated plants also inhibit oxidative stress as part of their hypoglycemic activity with less toxicity. However, the isolation of their bioactive molecules is still lacking. This review provides a resource to enable thorough assessments of the therapeutic profiles of available medicinal plants used for the management of diabetes in the Eastern Cape, South Africa. Further studies such as the identification of the active ingredients of potent plants still need to be carried out; this may lead to new molecules in drug discovery and development.
Collapse
Affiliation(s)
- Samuel Odeyemi
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Graeme Bradley
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
20
|
Carvalho AR, Diniz RM, Suarez MAM, Figueiredo CSSES, Zagmignan A, Grisotto MAG, Fernandes ES, da Silva LCN. Use of Some Asteraceae Plants for the Treatment of Wounds: From Ethnopharmacological Studies to Scientific Evidences. Front Pharmacol 2018; 9:784. [PMID: 30186158 PMCID: PMC6110936 DOI: 10.3389/fphar.2018.00784] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Severe wounds result in large lesions and/or loss of function of the affected areas. The treatment of wounds has challenged health professionals due to its complexity, especially in patients with chronic diseases (such as diabetes), and the presence of pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Taking this into consideration, the development of new therapies for wound healing requires immediate attention. Ethnopharmacological studies performed in different countries have shown the use of several plants from the Asteraceae family as wound-healing agents. Evidences gained from the traditional medicine have opened new ways for the development of novel and more efficient therapies based on the pharmacological properties of these plants. In this article, we discuss the literature data on the use of Asteraceae plants for the treatment of wounds, based on the ethnopharmacological relevance of each plant. Special attention was given to studies showing the mechanisms of action of Asteraceae-derived compounds and clinical trials. Ageratina pichinchensis (Kunth) R.M. King and H. Rob. and Calendula officinalis L. preparations/compounds were found to show good efficacy when assessed in clinical trials of complicated wounds, including venous leg ulcers and foot ulcers of diabetic patients. The compounds silibinin [from Silybum marianum (L.) Gaertn.] and jaceosidin (from Artemisia princeps Pamp.) were identified as promising compounds for the treatment of wounds. Overall, we suggest that Asteraceae plants represent important sources of compounds that may act as new and efficient healing products.
Collapse
Affiliation(s)
| | - Roseana M Diniz
- Programa de Pós-Graduação, Universidade Ceuma, São Luís, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Egas V, Salazar-Cervantes G, Romero I, Méndez-Cuesta CA, Rodríguez-Chávez JL, Delgado G. Anti-Helicobacter pylori metabolites from Heterotheca inuloides (Mexican arnica). Fitoterapia 2018. [PMID: 29540312 DOI: 10.1016/j.fitote.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Verónica Egas
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico
| | - Gabriela Salazar-Cervantes
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico
| | - Irma Romero
- Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico
| | - Carlos A Méndez-Cuesta
- Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Mexico City 04960, Mexico
| | - José Luis Rodríguez-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico
| | - Guillermo Delgado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico.
| |
Collapse
|
22
|
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142:213-228. [DOI: 10.1016/j.ejmech.2017.07.034] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022]
|
23
|
Effect of natural and semi-synthetic cadinanes from Heterotheca inuloides on NF-κB, Nrf2 and STAT3 signaling pathways and evaluation of their in vitro cytotoxicity in human cancer cell lines. Bioorg Med Chem 2017; 25:3135-3147. [PMID: 28410869 DOI: 10.1016/j.bmc.2017.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 02/01/2023]
Abstract
The effects of ten natural cadinane sesquiterpenoids isolated from Heterotheca inuloides on the pathways of the NF-κB, Nrf2 and STAT3 transcription factors were studied for the first time. The main constituent in this species, 7-hydroxy-3,4-dihydrocadalene (1), showed anti-NF-κB activity and activated the antioxidant Nrf2 pathway, which may explain the properties reported for the traditional use of the plant. In addition to the main metabolite, a structurally similar compound, 7-hydroxy-cadalene (2), also displayed anti-NF-κB activity. Thus, both natural compounds were used as templates for the preparation of a novel semi-synthetic derivative set, including esters and carbamates, which were evaluated for their potential in vitro antiproliferative activities against six human cancer cell lines. Carbamate derivatives 32 and 33 were found to exhibit potent activity against human colorectal adenocarcinoma and showed important selectivity in cancer cells. Among ester derivatives, compound 13 was determined to be a more potent NF-κB inhibitor and Nrf2 activator than its parent, 7-hydroxy-3,4-dihydrocadalene (1). Furthermore, this compound decreases levels of phospho-IκBα, a protein complex involved in the NF-κB activation pathway. Molecular simulations suggest that all active compounds interact with the activation loop of the IKKβ subunit in the IKK complex, which is the responsible of IκBα phosphorylation. Thus, we identified two natural, and one semi-synthetic, NF-κB and Nrf2 modulators and two new promising cytotoxic compounds.
Collapse
|