1
|
Lv D, Zheng W, Zhang Z, Lin Z, Wu K, Liu H, Liao X, Sun Y. Microbial imidazole propionate affects glomerular filtration rate in patients with diabetic nephropathy through association with HSP90α. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119703. [PMID: 38453032 DOI: 10.1016/j.bbamcr.2024.119703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Imidazole propionate (ImP) is a detrimental metabolite produced by the fermentation of histidine intermediates via the intestinal flora. Here, the untargeted metabolite analysis of plasma metabolites from patients with diabetic nephropathy (DN), in combination with the Human Metabolome Database, revealed significantly increased levels of ImP in patients with DN, with a positive correlation with patients' blood creatinine concentration and urinary albumin-to-creatinine ratio, and a negative correlation with the glomerular filtration rate. RNA-seq was applied to detect the effects of ImP on renal tissue transcriptome in mice with DN. It demonstrated that ImP exacerbated renal injury in mice with DN and promoted renal tubular epithelial-mesenchymal transition (EMT), leading to renal mesenchymal fibrosis and renal impairment. Furthermore, ImP was found to directly target HAP90α and activate the PI3K-Akt signalling pathway, which is involved in EMT, by the drug affinity response target stability method. The findings showed that ImP may provide a novel target for DN quality, as it can directly bind to and activate HSP90, thereby facilitating the development of DN while acting as a potential indicator for the clinical diagnosis of DN.
Collapse
Affiliation(s)
- Dan Lv
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenhan Zheng
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ziyue Lin
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Keqian Wu
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yan Sun
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Wang S, Qin S, Cai B, Zhan J, Chen Q. Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:932649. [PMID: 37522131 PMCID: PMC10376707 DOI: 10.3389/fendo.2023.932649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic microvascular abnormalities of diabetes mellitus and the major cause of uremia. Accumulating evidence has confirmed that fibrosis is a significant pathological feature that contributes to the development of chronic kidney disease in DN. However, the exact mechanism of renal fibrosis in DN is still unclear, which greatly hinders the treatment of DN. Chinese herbal medicine (CHM) has shown efficacy and safety in ameliorating inflammation and albuminuria in diabetic patients. In this review, we outline the underlying mechanisms of renal fibrosis in DN, including oxidative stress (OS) generation and OS-elicited ASK1-p38/JNK activation. Also, we briefly summarize the current status of CHM treating DN by improving renal fibrosis. The treatment of DN by inhibiting ASK1 activation to alleviate renal fibrosis in DN with CHM will promote the discovery of novel therapeutic targets for DN and provide a beneficial therapeutic method for DN.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Qin
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Baochao Cai
- Diabetes Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Jihong Zhan
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Liu Z, Nan P, Gong Y, Tian L, Zheng Y, Wu Z. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomed Pharmacother 2023; 164:114897. [PMID: 37224754 DOI: 10.1016/j.biopha.2023.114897] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by tubulointerstitial fibrosis caused by epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. Although ferroptosis promotes DN development, the specific pathological process that is affected by ferroptosis in DN remains unclear. Herein, EMT-related changes, including increased α-smooth muscle actin (α-SMA) and Vimentin expression and decreased E-cadherin expression, were observed in the renal tissues of streptozotocin-induced DN mice and high glucose-cultured human renal proximal tubular (HK-2) cells. Treatment with ferrostatin-1 (Fer-1) ameliorated these changes and rescued renal pathological injury in diabetic mice. Interestingly, endoplasmic reticulum stress (ERS) was activated during EMT progression in DN. Inhibiting ERS improved the expression of EMT-associated indicators and further rescued the characteristic changes in ferroptosis caused by high glucose, including reactive oxygen species (ROS) accumulation, iron overload, increased lipid peroxidation product generation, and reduced mitochondrial cristae. Moreover, overexpression of XBP1 increased Hrd1 expression and inhibited NFE2-related factor 2 (Nrf2) expression, which could enhance cell susceptibility to ferroptosis. Co-immunoprecipitation (Co-IP) and ubiquitylation assays indicated that Hrd1 interacted with and ubiquitinated Nrf2 under high-glucose conditions. Collectively, our results demonstrated that ERS triggers ferroptosis-related EMT progression through the XBP1-Hrd1-Nrf2 pathway, which provides new insights into potential mechanisms for delaying EMT progression in DN.
Collapse
Affiliation(s)
- Zijun Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Ping Nan
- Department of Obster & Gynecol, Shengli Oilfield Center Hospital, Dongying, Shandong 257000, China.
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Ling Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
4
|
Zhou K, Zhang J, Liu C, Ou L, Wang F, Yu Y, Wang Y, Bai S. Sanziguben polysaccharides inhibit diabetic nephropathy through NF-κB-mediated anti-inflammation. Nutr Metab (Lond) 2021; 18:81. [PMID: 34493288 PMCID: PMC8425148 DOI: 10.1186/s12986-021-00601-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/08/2021] [Indexed: 01/19/2023] Open
Abstract
Background Sanziguben polysaccharides (SZP) are large amounts of classical Chinese medicines from Sanziguben (SZGB). Moreover, SZGB is a widely applied compound prescription for diabetic nephropathy (DN) treatment, but the role is still unclear. This study initially explores the mechanism of SZP in the treatment of DN. Methods The high-fat diet plus streptozotocin injections were used to replicate the DN models in male C57BL/6 mice. DN mice were divided into five groups: DN mice, DN mice treated with SZP(1.01 or 2.02 g/kg), DN mice treated with SZGB decoction(4.7 g/kg), and DN mice treated with metformin (300 mg/kg). HG and LPS plus TNFα stimulated human tubule epithelial (HK-2) cells to establish an in vitro model and treated with SZP (100 or 200 μg/mL). Results SZP was found to comprise sugar, protein, and uronic acid. Furthermore, SZP alleviated the progression of inflammation in vivo and in vitro by inhibiting the expression of NF-κB. Conclusions NF-κB plays a critical role in the development of DN induced by STZ and HG. Furthermore, SZP can attenuate the NF-κB‐mediated progression of diabetic nephropathy, improve DN through anti-inflammation.
Collapse
Affiliation(s)
- Kang Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China
| | - Jianing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China
| | - Lijuan Ou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China
| | - Fan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China
| | - Yumei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China.
| | - Shasha Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C306, Pharmaceutical Building, No. 232 Waihuan East Road, Panyu District, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Huang Q, Ouyang DS, Liu Q. Isoeucommin A attenuates kidney injury in diabetic nephropathy through the Nrf2/HO-1 pathway. FEBS Open Bio 2021. [PMID: 34228907 PMCID: PMC8329780 DOI: 10.1002/2211-5463.13251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is a common complication in patients with diabetes and a leading cause of mortality. The management of DN in the clinic still remains a challenge. Therefore, the identification of novel compounds for DN treatment and their characterization in preclinical DN models are crucial. Isoeucommin A is a lignan compound isolated from Eucommia ulmoides Oliv, which has not been studied in detail. Our aim was to investigate the effect of Isoeucommin A in DN and to elucidate the molecular mechanisms though which Isoeucommin A acts in vitro and in vivo. We first isolated and purified Isoeucommin A by microporous resin column chromatography and studied the mass spectrogram, as well as the structure of Isoeucommin A, by high‐resolution electrospray ionization mass spectroscopy and NMR, respectively. We further established an in vivo rat DN model and measured the changes of blood glucose, body weight, kidney index (KI), blood urea nitrogen, creatinine (CRE), glutathione, malondialdehyde (MDA), SOD, albumin (ALB) and urinary ALB to CRE ratios on treatment with Isoeucommin A. In addition, we measured SOD, MDA, glycogen synthase kinase‐3β (GSK‐3β), phosphorylated (p)‐GSK‐3β, nuclear factor erythroid‐derived 2‐related factor 2 (Nrf2) and heme oxygenase‐1 (HO‐1) levels by quantitative real‐time PCR and western blot, and estimated cell viability by a 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide assay. After Isoeucommin A treatment, body weight, as well as SOD, glutathione, HO‐1 and Nrf2 expression levels, in DN rats increased in a dose‐dependent manner. In contrast, the levels of blood glucose, KI, blood urea nitrogen, CRE, urinary ALB to CRE ratio, tumor necrosis factor‐α, interleukin‐1β, interleukin‐6 and MDA decreased significantly. In addition, Isoeucommin A protected H2O2‐stimulated renal tubular epithelial cells from oxidative stress and activated the Nrf2/HO‐1 signaling pathway in high‐glucose‐stimulated human renal mesangial cells. In conclusion, Isoeucommin A could alleviate inflammation and oxidative stress in in vitro and in vivo DN models and thus attenuate kidney injury by activating the Nrf2/HO‐1 signaling pathway. Isoeucommin A could have the potential to be used as an effective drug for the treatment of DN.
Collapse
Affiliation(s)
- Qi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., China
| | - Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., China
| | - Qiong Liu
- National Clinical Research Center for Geriatric Disorders, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Fang Q, Zheng B, Liu N, Liu J, Liu W, Huang X, Zeng X, Chen L, Li Z, Ouyang D. Trimethylamine N-Oxide Exacerbates Renal Inflammation and Fibrosis in Rats With Diabetic Kidney Disease. Front Physiol 2021; 12:682482. [PMID: 34220546 PMCID: PMC8243655 DOI: 10.3389/fphys.2021.682482] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota plays a pivotal role in the onset and development of diabetes and its complications. Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite of certain nutrients, is associated with type 2 diabetes and its complications. Diabetic kidney disease (DKD) is one of the most serious microvascular complications. However, whether TMAO accelerates the development of DKD remains unclear. We tested the hypothesis that TMAO accelerates the development of DKD. A high-fat diet/low-dose streptozotocin-induced diabetes rat model was established, with or without TMAO in the rats’ drinking water. Compared to the normal rats, the DKD rats showed significantly higher plasma TMAO levels at the end of the study. TMAO treatment not only exacerbated the kidney dysfunction of the DKD rats, but also renal fibrosis. Furthermore, TMAO treatment activated the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome and resulted in the release of interleukin (IL)-1β and IL-18 to accelerate renal inflammation. These results suggested that TMAO aggravated renal inflammation and fibrosis in the DKD rats, which provides a new perspective to understand the pathogenesis of DKD and a potential novel target for preventing the progression of DKD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Binjie Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Na Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
7
|
Nna VU, Abu Bakar AB, Zakaria Z, Othman ZA, Jalil NAC, Mohamed M. Malaysian Propolis and Metformin Synergistically Mitigate Kidney Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Molecules 2021; 26:molecules26113441. [PMID: 34198937 PMCID: PMC8201379 DOI: 10.3390/molecules26113441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy is reported to occur as a result of the interactions between several pathophysiological disturbances, as well as renal oxidative stress and inflammation. We examined the effect of Malaysian propolis (MP), which has anti-hyperglycemic, antioxidant and anti-inflammatory properties, on diabetes-induced nephropathy. Diabetic rats were either treated with distilled water (diabetic control (DC) group), MP (300 mg/kg b.w./day), metformin (300 mg/kg b.w./day) or MP + metformin for four weeks. We found significant increases in serum creatinine, urea and uric acid levels, decreases in serum sodium and chloride levels, and increase in kidney lactate dehydrogenase activity in DC group. Furthermore, malondialdehyde level increased significantly, while kidney antioxidant enzymes activities, glutathione level and total antioxidant capacity decreased significantly in DC group. Similarly, kidney immunoexpression of nuclear factor kappa B, tumor necrosis factor-α, interleukin (IL)-1β and caspase-3 increased significantly, while IL-10 immunoexpression decreased significantly in DC group relative to normal control group. Histopathological observations for DC group corroborated the biochemical data. Intervention with MP, metformin or both significantly mitigated these effects and improved renal function, with the best outcome following the combined therapy. MP attenuates diabetic nephropathy and exhibits combined beneficial effect with metformin.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria;
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.A.B.); (Z.Z.); (Z.A.O.)
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.A.B.); (Z.Z.); (Z.A.O.)
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.A.B.); (Z.Z.); (Z.A.O.)
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Mahaneem Mohamed
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria;
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Zhou F, Zou X, Zhang J, Wang Z, Yang Y, Wang D. Jian-Pi-Yi-Shen Formula Ameliorates Oxidative Stress, Inflammation, and Apoptosis by Activating the Nrf2 Signaling in 5/6 Nephrectomized Rats. Front Pharmacol 2021; 12:630210. [PMID: 33841151 PMCID: PMC8027107 DOI: 10.3389/fphar.2021.630210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing global public health problem, with high morbidity and mortality. Jian-Pi-Yi-Shen (JPYS) formula is a representative traditional Chinese medicine formula in the treatment of CKD, which is widely used in clinical practice in China. However, the underlying mechanism has not been well elucidated. In the present study, we measured the markers of apoptosis, inflammation, oxidative stress, and nuclear factor erythroid 2–related factor 2 (Nrf2) signaling to investigate the effects of JPYS formula on renal function and fibrosis and its molecular mechanism in an established animal model of 5/6 nephrectomized (5/6Nx) rats. The results demonstrated that the JPYS formula exerted a significant preventive effect on renal dysfunction and fibrosis, based on analysis of correlative parameters such as urinary protein, SCr, BUN, glomerular sclerosis index, and tubulointerstitial fibrosis score and renal histopathology and ultrastructural pathology of CKD rats. JPYS formula also induced downregulation of gene expression associated with fibrosis, such as TGF-β and type I, III, and IV collagen. Moreover, the JPYS formula showed a significant protective effect in suppressing cell apoptosis according to the results of apoptotic indexes, including increased gene expression of Bcl-2, decreased gene expression of Bax, caspase 3, caspase 9, and the number of TUNEL-positive cells. JPYS formula also ameliorated the activation of the NF-κB-mediated inflammatory pathway, as manifested by the downregulation of gene expression of TNF-α, IL-1β, IκBα, NF-κB p65, MCP-1, CXCL1, COX-2, and iNOS in the kidney. Our evidence also suggested that the JPYS formula ameliorates oxidative stress by promoting antioxidant function according to antioxidant index indicators as an indicator of GSH, SOD, CAT, and GPx and abating excessive accumulation of the reactive oxygen species biomarkers, including ROS, TBARS, 8-oxo-dG, and MDA. The data also suggested that the JPYS formula reversed the downregulation of HO-1 and Nrf2 level and upregulation of Keap1 expression. Together, our data highlighted that the JPYS formula relieved renal oxidative injury mediated by activation of Nrf2 signaling by inhibiting inflammation and apoptosis in CKD rats.
Collapse
Affiliation(s)
- Fanyuan Zhou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaohu Zou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ziwei Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Chinese Medicine, Southern Medical University, Shenzhen, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Huang HZ, Qiu M, Lin JZ, Li MQ, Ma XT, Ran F, Luo CH, Wei XC, Xu RC, Tan P, Fan SH, Yang M, Han L, Zhang DK. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances. Eur J Nutr 2021; 60:3525-3542. [PMID: 33439332 DOI: 10.1007/s00394-020-02471-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Phyllanthus emblica is a fruit widely consumed in subtropical areas, which is rich in polyphenols and other nutrients. There are increasing evidences that as a daily and nutritious fruit, it may have a positive role in controlling diabetic complications. According to the new study, its mechanisms include enhancing the functioning of insulin, reducing insulin resistance, activating the insulin-signaling pathway, protecting β-cells, scavenging free radicals, alleviating inflammatory reactions, and reducing the accumulation of advanced glycation end products. Owing to its few side effects, and low price, it should be easily accepted by patients and has potential for preventing diabetes. Taken together, Phyllanthus emblica may be an ideal fruit for controlling diabetic complications. This review highlights the latest findings of the role of Phyllanthus emblica in anti-diabetes and its complications, especially clarifies the molecular mechanism of the chemical components related to this effect, and prospects some existing problems and future research directions.
Collapse
Affiliation(s)
- Hao-Zhou Huang
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Min Qiu
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Jun-Zhi Lin
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072, China
| | - Meng-Qi Li
- Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Xi-Tao Ma
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072, China
| | - Fei Ran
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Chuan-Hong Luo
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Xi-Chuan Wei
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Run-Chun Xu
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Peng Tan
- State Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality, National Administration of TCM, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, 610000, China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Li Han
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China.
| | - Ding-Kun Zhang
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China.
| |
Collapse
|
10
|
Wang S, Nie P, Lu X, Li C, Dong X, Yang F, Luo P, Li B. Nrf2 participates in the anti-apoptotic role of zinc in Type 2 diabetic nephropathy through Wnt/β-catenin signaling pathway. J Nutr Biochem 2020; 84:108451. [PMID: 32795642 DOI: 10.1016/j.jnutbio.2020.108451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Zinc (Zn), as an essential trace element, has been approved to serve many roles in diabetic studies. Also Zn deficiency will aggravate renal damage in diabetes through suppression of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and function. The purpose of this study was to illustrate the role of Zn in renal apoptosis in diabetes and whether Nrf2 participated in the process. Type 2 diabetes mice model was induced by a single dose of streptozotocin (STZ) injection after high-fat diet (HFD) feeding for 3 months, then the mice were given diets supplemented with different concentrations of Zn (control, 30 ppm; low-concentration, 0.85 ppm). After 12-week treatment, morphology and associated protein expressions were examined. The results showed that low Zn diet significantly aggravated the level of renal apoptosis during diabetes, performed as the upregulation of caspase-3 expression. In addition, either low Zn diet or diabetes or both dramatically decreased the expression of Nrf2 and P-AKT in kidney. Moreover, the expression of β-catenin in kidney was increased markedly in diabetic groups. Mechanistic study applying human renal tubular epithelial cells (HK11) confirmed the role of Nrf2, as silencing Nrf2 expression abolished Zn supplementation protection against high sugar + high fat + low Zn-induced apoptosis and downregulation of β-catenin expression. All these results suggest that Nrf2 plays a key role in Zn protection against Type 2 diabetes induced renal apoptosis, which might be through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Songyan Wang
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China; Department of Nephropathy, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Ping Nie
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Xiaodan Lu
- Diagnostics Medical Center, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Chunguang Li
- Department of Surgery, Changchun Traditional Chinese Medicine Hospital, 1913 Taibei Street, Changchun 130000, China.
| | - Xiaoming Dong
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Fan Yang
- Department of Nephropathy, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Bing Li
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
11
|
Renoprotective effects of Gushen Jiedu capsule on diabetic nephropathy in rats. Sci Rep 2020; 10:2040. [PMID: 32029775 PMCID: PMC7005167 DOI: 10.1038/s41598-020-58781-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Gushen Jiedu capsule (GSJD) is a formula that has been widely used in traditional Chinese medicine for the prevention and treatment of diabetic nephropathy (DN). However, the mechanism underlying the protective effects of GSJD on DN is still unclear. This study was performed to clarify the therapeutic effects of GSJD on DN and its underlying mechanisms. High-fat diet- and streptozotocin-induced DN rats were treated with or without GSJD suspension by gavage for 8 weeks, and biochemical changes in blood and urine were analysed. Kidneys were isolated for histological, TUNEL and Western blot analysis. Compared to the DN group, the GSJD-treated groups exhibited decreased urinary albumin, ameliorated renal dysfunction, including serum creatinine and blood urea nitrogen, and attenuated total cholesterol, triglyceride and total protein levels. However, there were no significant effects of GSJD on body weight, fasting blood glucose or albuminuria. Histology showed that GSJD could retard the progression of DN and decrease the apoptosis rate from 52% to less than 20%. Western blot analysis showed that GSJD could regulate the mitochondrial apoptotic pathway by downregulating the expression of Bax and upregulating the expression of BCL-2 in the kidneys of DN rats. Moreover, the Akt pathway, an upstream signalling pathway of the BCL-2 family, was also ameliorated by GSJD. Further, the podocyte foot process markers podocin and nephrin were upregulated by GSJD in DN rats. This study demonstrated that GSJD might play a renoprotective role by inhibiting apoptosis and regulating the mitochondrial apoptotic and Akt pathways during pathological changes in DN.
Collapse
|
12
|
Ma B, Zhu Z, Zhang J, Ren C, Zhang Q. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
Dong Z, Sun Y, Wei G, Li S, Zhao Z. A Nucleoside/Nucleobase-Rich Extract from Cordyceps Sinensis Inhibits the Epithelial-Mesenchymal Transition and Protects against Renal Fibrosis in Diabetic Nephropathy. Molecules 2019; 24:E4119. [PMID: 31739543 PMCID: PMC6891521 DOI: 10.3390/molecules24224119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cordyceps Sinensis, a traditional Chinese medicine and a healthy food, has been used for the treatment of kidney disease for a long time. The aim of present study was to isolate a nucleoside/nucleobase-rich extract from Cordyceps Sinensis (CS-N), determine the contents of nucleosides and nucleobases, and explore its anti-diabetic nephropathy activity. CS-N was isolated and purified by using microporous resin and glucan columns and the unknown compounds were identified by using HPLC-DAD and LC-MS. The effects of CS-N on the epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) depositions, and the MAPK signaling pathway were evaluated in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-exposed HK-2 cells. CS-N significantly attenuated the abnormity of renal functional parameters, ameliorated histopathological changes, and inhibited EMT and ECM accumulation by regulating p38/ERK signaling pathways. Our findings indicate that CS-N exerts a therapeutic effect on experimental diabetic renal fibrosis by mitigating the EMT and the subsequent ECM deposition with inhibition of p38 and ERK signaling pathways.
Collapse
Affiliation(s)
- Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
| | - Guangwei Wei
- School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China;
| | - Siying Li
- School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China;
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
14
|
Li T, Hua Q, Li N, Cui Y, Zhao M. Protective effect of a polysaccharide from Dipsacus asper Wall on streptozotocin (STZ)-induced diabetic nephropathy in rat. Int J Biol Macromol 2019; 133:1194-1200. [DOI: 10.1016/j.ijbiomac.2019.04.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
|
15
|
Lu Z, Zhong Y, Liu W, Xiang L, Deng Y. The Efficacy and Mechanism of Chinese Herbal Medicine on Diabetic Kidney Disease. J Diabetes Res 2019; 2019:2697672. [PMID: 31534972 PMCID: PMC6732610 DOI: 10.1155/2019/2697672] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes and is one of the main causes of end-stage renal disease (ESRD) in many countries. The pathological features of DKD are the hypertrophy of mesangial cells, apoptosis of podocytes, glomerular basement membrane (GBM) thickening, accumulation of extracellular matrix (ECM), glomerular sclerosis, and tubulointerstitial fibrosis. The etiology of DKD is very complicated and many factors are involved, such as genetic factors, hyperglycemia, hypertension, hyperlipidemia, abnormalities of renal hemodynamics, and metabolism of vasoactive substances. Although some achievements have been made in the exploration of the pathogenesis of DKD, the currently available clinical treatment methods are still not completely effective in preventing the progress of DKD to ESRD. CHM composed of natural products has traditionally been used for symptom relief, which may offer new insights into therapeutic development of DKD. We will summarize the progress of Chinese herbal medicine (CHM) in the treatment of DKD from two aspects. In clinical trials, the Chinese herbal formulas were efficacy and safety confirmed by the randomized controlled trials. In terms of experimental research, studies provided evidence for the efficacy of CHM from the perspectives of balancing metabolic disorders, reducing inflammatory response and oxidative stress, antifibrosis, protecting renal innate cells, and regulating microRNA and metabolism. CHM consisting of different ingredients may play a role in synergistic interactions and multiple target points in the treatment of DKD.
Collapse
Affiliation(s)
- Zhenzhen Lu
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yifei Zhong
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wangyi Liu
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ling Xiang
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yueyi Deng
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
16
|
Zhou B, Li Q, Wang J, Chen P, Jiang S. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling. Food Chem Toxicol 2019; 123:16-27. [DOI: 10.1016/j.fct.2018.10.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/19/2022]
|
17
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci 2018; 218:25-30. [PMID: 30092299 DOI: 10.1016/j.lfs.2018.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and epithelial-mesenchymal transition (EMT) play a critical role in transforming growth factor (TGF)-β1-mediated fibrotic airway remodeling in asthma. Polydatin (PD) is a small natural molecule in Chinese medicine; it is isolated from Polygonum cuspidatum and has antioxidative properties. In this study, we aimed to determine whether PD was protective against ROS-induced pulmonary fibrosis in asthma. Ovalbumin (OVA) was used to induce asthma in a mouse model that was treated with or without PD. We also created nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown BEAS-2B cells and investigated whether PD reversed TGF-β1-induced pulmonary epithelial cell EMT by promotion of Nrf2-mediated antioxidation. Immunofluorescence showed that ROS and TGF-β1 expression was significantly increased in lung tissue from the OVA-induced asthma model. PD treatment inhibited activity of ROS and TGF-β1. Immunohistochemistry showed that PD treatment decreased OVA-induced lung ROS, TGF-β1 expression and fibroblasts. Western blotting showed that PD treatment reversed OVA-induced NADPH oxidase (NOX)1/4 expression by promoting Nrf2-mediated heme oxygenase-1 and NADPH dehydrogenase (quinone)-1 expression. PD treatment suppressed OVA-induced EMT and lung fibroblast protein expression in lung tissue. Nrf2 downregulation suppressed the protective effect of PD by promoting TGF-β1-induced ROS and EMT and accumulation of extracellular-matrix-related protein. All these data indicate that PD has potential therapeutic effects in asthma by promoting Nrf2-mediated antioxidation.
Collapse
|
19
|
Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation. Biomed Pharmacother 2018; 102:1145-1151. [PMID: 29710532 DOI: 10.1016/j.biopha.2018.03.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 01/12/2023] Open
Abstract
Diabetic nephropathy is one of the most serious and most frequently encountered diabetic complication, accounting for the highest cause of end-stage renal disease. This present study was aimed at exploring the protective/attenuative effect of Lycium chinense leaf extract (MELC) on streptozotocin induced diabetic nephropathy in experimental Sprague Dawley rats. The oral administration of diabetic rats with MELC markedly ameliorated renal dysfunction as observed in the significant reduction in the serum levels of creatinine, blood urea nitrogen (BUN), albumin and TGF-β1 as compared to the untreated diabetic control rats. In addition, the elevated levels of renal oxidative stress markers and pro-inflammatory parameters (GSH, SOD, CAT, MDA, TNF-α, IL-6 and IL-1β) were significantly reduced in MELC treated diabetic rats. The results obtained in this study suggests that L. chinense leaf might have the potential as possible pharmacological agent against diabetic nephropathy by suppressing renal oxidative stress and inflammation.
Collapse
|