1
|
Li X, Ma F, Wang S, Tang T, Ma L, Qiao Z, Ma Z, Wang J, Liu Z. Micro RNA-175 Targets Claudin-1 to Inhibit Madin-Darby Canine Kidney Cell Adhesion. Genes (Basel) 2024; 15:1333. [PMID: 39457456 PMCID: PMC11506999 DOI: 10.3390/genes15101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The Madin-Darby canine kidney (MDCK) cell line constitutes a key component of influenza vaccine production, but its dependence on adherent growth limits cell culture density and hinders vaccine yield. There is evidence that the use of gene editing techniques to inhibit cell adhesion and establish an easily suspended cell line can improve vaccine yield; however, the mechanisms underlying MDCK cell adhesion are unclear. Methods: In this study, we used transcriptomics to analyse differentially expressed mRNAs and miRNAs in adherent and suspension cultures of MDCK cells. Results: We found that claudin-1 (CLDN1) expression was downregulated in the suspension MDCK cells and that CLDN1 promotes MDCK cell-extracellular matrix adhesion. Additionally, microRNA (miR)-175 expression was upregulated in the suspension MDCK cells. Importantly, we demonstrated that miR-175 inhibits MDCK cell adhesion by targeting the CLDN1 3'-untranslated region (UTR). These findings contribute to a more comprehensive understanding of the regulatory mechanisms modulating cell adhesion and provide a basis for establishing suspension-adapted, genetically engineered cell lines. Our work could also facilitate the identification of targets for tumour therapy.
Collapse
Affiliation(s)
- Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Fangfang Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Tian Tang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Liyuan Ma
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
2
|
Lin T, Daddi L, Tang Y, Zhou Y, Liu B, Moore MD, Liu Z. Antrodia camphorata Supplementation during Early Life Alters Gut Microbiota and Inhibits Young-Onset Intestinal Tumorigenesis in APC1638N Mice Later in Life. Nutrients 2024; 16:2408. [PMID: 39125288 PMCID: PMC11314251 DOI: 10.3390/nu16152408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/β-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.
Collapse
Affiliation(s)
- Tingchun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
| | - Lauren Daddi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (L.D.); (Y.Z.)
| | - Ying Tang
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (L.D.); (Y.Z.)
| | - Buping Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
3
|
Chang WL, Peng JY, Hong CL, Li PC, Lu FJ, Chen CH. Parecoxib and 5-Fluorouracil Synergistically Inhibit EMT and Subsequent Metastasis in Colorectal Cancer by Targeting PI3K/Akt/NF-κB Signaling. Biomedicines 2024; 12:1526. [PMID: 39062099 PMCID: PMC11274433 DOI: 10.3390/biomedicines12071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer is one of the most common causes of cancer mortality worldwide, and innovative drugs for the treatment of colorectal cancer are continually being developed. 5-Fluorouracil (5-FU) is a common clinical chemotherapeutic drug. Acquired resistance to 5-FU is a clinical challenge in colorectal cancer treatment. Parecoxib is a selective COX-2-specific inhibitor that was demonstrated to inhibit metastasis in colorectal cancers in our previous study. This study aimed to investigate the synergistic antimetastatic activities of parecoxib to 5-FU in human colorectal cancer cells and determine the underlying mechanisms. Parecoxib and 5-FU synergistically suppressed metastasis in colorectal cancer cells. Treatment with the parecoxib/5-FU combination induced an increase in E-cadherin and decrease in β-catenin expression. The parecoxib/5-FU combination inhibited MMP-9 activity, and the NF-κB pathway was suppressed as well. Mechanistic analysis denoted that the parecoxib/5-FU combination hindered the essential molecules of the PI3K/Akt route to obstruct metastatic colorectal cancer. Furthermore, the parecoxib/5-FU combination could inhibit reactive oxygen species. Our work showed the antimetastatic capacity of the parecoxib/5-FU combination for treating colorectal cancers via the targeting of the PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Wan-Ling Chang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Jyun-Yu Peng
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Chain-Lang Hong
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Pei-Ching Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City 402306, Taiwan;
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, A25-303 Room, Life Sciences Hall, No. 300, Syuefu Road, National Chiayi University, Chiayi City 600355, Taiwan
| |
Collapse
|
4
|
Hseu YC, Yeh JT, Vadivalagan C, Chen SJ, Gowrisankar YV, Pandey S, Hsu YT, Yen HR, Huang HC, Hseu JH, Yang HL. The in vitro and in vivo depigmentation activity of coenzyme Q 0, a major quinone derivative from Antrodia camphorata, through autophagy induction in human melanocytes and keratinocytes. Cell Commun Signal 2024; 22:151. [PMID: 38408981 PMCID: PMC10895752 DOI: 10.1186/s12964-024-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 406040, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 406040, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan
| | - Jou-Tsen Yeh
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | | | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
| | - Yuan-Tai Hsu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung, 406040, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 404333, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Jhih-Hsuan Hseu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
5
|
Alghamdi RA, Al-Zahrani MH. Identification of key claudin genes associated with survival prognosis and diagnosis in colon cancer through integrated bioinformatic analysis. Front Genet 2023; 14:1221815. [PMID: 37799140 PMCID: PMC10550083 DOI: 10.3389/fgene.2023.1221815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
The claudin multigene family is associated with various aberrant physiological and cellular signaling pathways. However, the association of claudins with survival prognosis, signaling pathways, and diagnostic efficacy in colon cancer remains poorly understood. Methods: Through the effective utilization of various bioinformatics methods, including differential gene expression analysis, gene set enrichment analysis protein-protein interaction (PPI) network analysis, survival analysis, single sample gene set enrichment analysis (ssGSEA), mutational variance analysis, and identifying receiver operating characteristic curve of claudins in The Cancer Genome Atlas colon adenocarcinoma (COAD). Results: We found that: CLDN2, CLDN1, CLDN14, CLDN16, CLDN18, CLDN9, CLDN12, and CLDN6 are elevated in COAD. In contrast, the CLDN8, CLDN23, CLDN5, CLDN11, CLDN7, and CLDN15 are downregulated in COAD. By analyzing the public datasets GSE15781 and GSE50760 from NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/), we have confirmed that CLDN1, CLDN2, and CLDN14 are significantly upregulated and CLDN8 and CLDN23 are significantly downregulated in normal colon, colon adenocarcinoma tumor, and liver metastasis of colon adenocarcinoma tissues from human samples. Various claudins are mutated and found to be associated with diagnostic efficacy in COAD. Conclusion: The claudin gene family is associated with prognosis, immune regulation, signaling pathway regulations, and diagnosis of COAD. These findings may provide new molecular insight into claudins in the treatment of colon cancer.
Collapse
Affiliation(s)
- Rana A. Alghamdi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh, Saudi Arabia
- Regenerative Medicine Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Lin TC, Soorneedi A, Guan Y, Tang Y, Shi E, Moore MD, Liu Z. Turicibacter fermentation enhances the inhibitory effects of Antrodia camphorata supplementation on tumorigenic serotonin and Wnt pathways and promotes ROS-mediated apoptosis of Caco-2 cells. Front Pharmacol 2023; 14:1203087. [PMID: 37663253 PMCID: PMC10469317 DOI: 10.3389/fphar.2023.1203087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Diet-induced obesity has been shown to decrease the abundance of Turicibacter, a genus known to play a role in the serotonin signaling system, which is associated with colorectal tumorigenesis, making the presence of Turicibacter potentially influential in the protection of intestinal tumorigenesis. Recently, Antrodia camphorata (AC), a medicinal fungus native to Taiwan, has emerged as a promising candidate for complementary and alternative cancer therapy. Small molecules and polysaccharides derived from AC have been reported to possess health-promoting effects, including anti-cancer properties. Methods: Bacterial culture followed with cell culture were used in this study to determine the role of Turicibacter in colorectal tumorigenesis and to explore the anti-cancer mechanism of AC with Turicibacter fermentation. Results: Turicibacter fermentation and the addition of AC polysaccharide led to a significant increase in the production of nutrients and metabolites, including α-ketoglutaric acid and lactic acid (p < 0.05). Treatment of Turicibacter fermented AC polysaccharide was more effective in inhibiting serotonin signaling-related genes, including Tph1, Htr1d, Htr2a, Htr2b, and Htr2c (p < 0.05), and Wnt-signaling related protein and downstream gene expressions, such as phospho-GSK-3β, active β-catenin, c-Myc, Ccnd1, and Axin2 (p < 0.05). Additionally, it triggered the highest generation of reactive oxygen species (ROS), which activated PI3K/Akt and MAPK/Erk signaling and resulted in cleaved caspase-3 expression. In comparison, the treatment of AC polysaccharide without Turicibacter fermentation displayed a lesser effect. Discussion: Our findings suggest that AC polysaccharide effectively suppresses the tumorigenic serotonin and Wnt-signaling pathways, and promotes ROS-mediated apoptosis in Caco-2 cells. These processes are further enhanced by Turicibacter fermentation.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Anand Soorneedi
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yingxue Guan
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Ying Tang
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Eleanor Shi
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
7
|
Ouban A, Arabi TZ. Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review. Cancers (Basel) 2023; 15:4095. [PMID: 37627123 PMCID: PMC10452390 DOI: 10.3390/cancers15164095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Premalignant lesions of the gastrointestinal tract are a group of disorders which act as the harbinger of malignant tumors. They are the ground-zero of neoplastic transformation, and their identification and management offer patients the best opportunity of blocking the progress of cancer. However, diagnoses of some of these conditions are hard to make, and their clinical importance is difficult to assess. Recent reports indicated that several claudin proteins have altered expressions in many cancers, including esophageal, gastric, colon, liver, and pancreatic cancers. The early identification of the aberrant expression of these proteins could lead to the early diagnosis and management of gastrointestinal tumors. Specifically, claudins -1, -2, -3, -4, and -18 are frequently overexpressed in gastrointestinal preneoplastic lesions. These altered expressions have shown clinical value in several tumors, providing diagnostic and prognostic information. In this article, we review the literature on the aberrant expression of claudins in preneoplastic lesions of the gastrointestinal tract. Additionally, we summarize their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Tarek Ziad Arabi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
8
|
Tacchini M, Sacchetti G, Guerrini A, Paganetto G. Mycochemicals against Cancer Stem Cells. Toxins (Basel) 2023; 15:360. [PMID: 37368660 DOI: 10.3390/toxins15060360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven efficacy for treating various diseases, including cancer. Numerous studies have already been conducted to explore the antitumoural properties of mushroom extracts against cancer. Still, very few have reported the anticancer properties of mushroom polysaccharides and mycochemicals against the specific population of cancer stem cells (CSCs). In this context, β-glucans are relevant in modulating immunological surveillance against this subpopulation of cancer cells within tumours. Small molecules, less studied despite their spread and assortment, could exhibit the same importance. In this review, we discuss several pieces of evidence of the association between β-glucans and small mycochemicals in modulating biological mechanisms which are proven to be involved with CSCs development. Experimental evidence and an in silico approach are evaluated with the hope of contributing to future strategies aimed at the direct study of the action of these mycochemicals on this subpopulation of cancer cells.
Collapse
Affiliation(s)
- Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Yang HL, Chiu LW, Lin YA, Pandey S, Vadivalagan C, Liao JW, Gowrisankar YV, Chen HJ, Lin HY, Hseu YC. In vitro and in vivo anti-tumor activity of Coenzyme Q 0 against TWIST1-overexpressing HNSCC cells: ROS-mediated inhibition of EMT/metastasis and autophagy/apoptosis induction. Toxicol Appl Pharmacol 2023; 465:116453. [PMID: 36914119 DOI: 10.1016/j.taap.2023.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Li-Wen Chiu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan
| | | | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Hui-Yi Lin
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
10
|
Yang HL, Lin PY, Vadivalagan C, Lin YA, Lin KY, Hseu YC. Coenzyme Q 0 defeats NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects by inhibiting HIF-1α expression in human triple-negative breast cancer cells. Arch Toxicol 2023; 97:1047-1068. [PMID: 36847822 DOI: 10.1007/s00204-023-03456-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Coenzyme Q0 (CoQ0) is a derivative quinone from Antrodia camphorata (AC) that exerts anticancer activities. This study examined the anticancer attributes of CoQ0 (0-4 µM) on inhibited anti-EMT/metastasis and NLRP3 inflammasome, and altered Warburg effects via HIF-1α inhibition in triple-negative breast cancer (MDA-MB-231 and 468) cells. MTT assay, cell migration/invasion assays, Western blotting, immunofluorescence, metabolic reprogramming, and LC-ESI-MS were carried out to assess the therapy potential of CoQ0. CoQ0 inhibited HIF-1α expression and suppressed the NLRP3 inflammasome and ASC/caspase-1 expression, followed by downregulation of IL-1β and IL-18 expression in MDA-MB-231 and 468 cells. CoQ0 ameliorated cancer stem-like markers by decreasing CD44 and increasing CD24 expression. Notably, CoQ0 modulated EMT by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal marker N-cadherin. CoQ0 inhibited glucose uptake and lactate accumulation. CoQ0 also inhibited HIF-1α downstream genes involved in glycolysis, such as HK-2, LDH-A, PDK-1, and PKM-2 enzymes. CoQ0 decreased extracellular acidification rate (ECAR), glycolysis, glycolytic capacity, and glycolytic reserve in MDA-MB-231 and 468 cells under normoxic and hypoxic (CoCl2) conditions. CoQ0 inhibited the glycolytic intermediates lactate, FBP, and 2/3-PG, and PEP levels. CoQ0 increased oxygen consumption rate (OCR), basal respiration, ATP production, maximal respiration, and spare capacity under normoxic and hypoxic (CoCl2) conditions. CoQ0 increased TCA cycle metabolites, such as citrate, isocitrate, and succinate. CoQ0 inhibited aerobic glycolysis and enhanced mitochondrial oxidative phosphorylation in TNBC cells. Under hypoxic conditions, CoQ0 also mitigated HIF-1α, GLUT1, glycolytic-related (HK-2, LDH-A, and PFK-1), and metastasis-related (E-cadherin, N-cadherin, and MMP-9) protein or mRNA expression in MDA-MB-231 and/or 468 cells. Under LPS/ATP stimulation, CoQ0 inhibited NLRP3 inflammasome/procaspase-1/IL-18 activation and NFκB/iNOS expression. CoQ0 also hindered LPS/ATP-stimulated tumor migration and downregulated LPS/ATP-stimulated N-cadherin and MMP-2/-9 expression. The present study revealed that suppression of HIF-1α expression caused by CoQ0 may contribute to inhibition of NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects of triple-negative breast cancers.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Ping-Yu Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan.
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
11
|
Yang HL, Chang YH, Pandey S, Bhat AA, Vadivalagan C, Lin KY, Hseu YC. Antrodia camphorata and coenzyme Q 0 , a novel quinone derivative of Antrodia camphorata, impede HIF-1α and epithelial-mesenchymal transition/metastasis in human glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947447 DOI: 10.1002/tox.23785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 μg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and β-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 μM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/β-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and β-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Yao-Hsien Chang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Asif Ali Bhat
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
12
|
Yang HL, Huang ST, Lyu ZH, Bhat AA, Vadivalagan C, Yeh YL, Hseu YC. The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
|
13
|
Zhang X, Li C, Wu Y, Cui P. The research progress of Wnt/β-catenin signaling pathway in colorectal cancer. Clin Res Hepatol Gastroenterol 2023; 47:102086. [PMID: 36657523 DOI: 10.1016/j.clinre.2023.102086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/05/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
The Wnt/β-catenin signaling pathway is highly conservative. β-catenin is the key molecule in this pathway. The β-catenin target genes regulate cell proliferation and apoptosis. Since Wnt pathway proteins are distributed on the cell membrane, cytoplasm, and nucleus, inhibiting or activating these pathway proteins presents a novel target for cancer treatment via the Wnt signaling pathway. Studies have found that this pathway plays a significant role in the formation and progression of cancers, particularly colorectal cancer. We summarised the activation and inhibition of the Wnt signaling pathway in tumors, its relationship with the microenvironment and crosstalk with other pathways, and the effect of targeting abnormal Wnt signaling in the treatment of colorectal cancer. Here is to review future targeted therapeutics in colorectal cancer research and implementation.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Congcong Li
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wu
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peilin Cui
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Lin YP, Hseu YC, Thiyagarajan V, Vadivalagan C, Pandey S, Lin KY, Hsu YT, Liao JW, Lee CC, Yang HL. The in vitro and in vivo anticancer activities of Antrodia salmonea through inhibition of metastasis and induction of ROS-mediated apoptotic and autophagic cell death in human glioblastoma cells. Biomed Pharmacother 2023; 158:114178. [PMID: 36916401 DOI: 10.1016/j.biopha.2022.114178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Antrodia salmonea (AS) exhibits anticancer activities against various cancers. OBJECTIVE This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism. METHODS MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenografted-nude mice were used to assess the potential of AS therapy. RESULTS AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/β-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS-induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan, ROC; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan, ROC.
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan, ROC; Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Yuan-Tai Hsu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC.
| |
Collapse
|
15
|
Wong CH, Chang WL, Lu FJ, Liu YW, Peng JY, Chen CH. Parecoxib expresses anti-metastasis effect through inhibition of epithelial-mesenchymal transition and the Wnt/β-catenin signaling pathway in human colon cancer DLD-1 cell line. ENVIRONMENTAL TOXICOLOGY 2022; 37:2718-2727. [PMID: 35917206 DOI: 10.1002/tox.23631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer is the third leading cause of cancer death in Taiwan. Current treatments involve combination of surgical resection, radiation, and chemotherapy. These treatments have demonstrated to increased five-year survival of a patient with colorectal cancer. However, metastasis is a major capability of cancer cells that causes poor prognosis, recurrence, and even death. Epidemiological and clinical studies have suggested the use of non-steroidal anti-inflammatory drugs (NSAIDs) as an effective class of compounds to prevent colon cancer. Parecoxib is an NSAID and the only parenterally administered selective cyclooxygenase (COX)-2 inhibitor. In this study, we evaluated whether parecoxib inhibits the metastasis of DLD-1 human colon cancer cells, a COX-2 null cell line, and the underlying mechanism. Cell migration of the DLD-1 cells was significantly inhibited by parecoxib treatment as shown by the Transwell migration assay. This enhanced anti-migration effect was correlated with the attenuated phosphorylation of Akt, expression of vimentin (a mesenchymal marker), and β-catenin, and corresponded with the upregulated GSK3β and E-cadherin (an epithelial marker). These findings suggested that parecoxib could inhibit the epithelial-mesenchymal transition (EMT) and metastasis in human colon cancer cells by downregulating β-catenin. Thus, parecoxib could provide a novel prospective strategy for a combination treatment with chemotherapeutic drugs against metastasis of human colon cancer.
Collapse
Affiliation(s)
- Chung Hang Wong
- Department of Anesthesiology, Chang Gung Memorial Hospital at ChiaYi, Chia-Yi, Taiwan, ROC
| | - Wan-Ling Chang
- Department of Anesthesiology, Chang Gung Memorial Hospital at ChiaYi, Chia-Yi, Taiwan, ROC
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan, ROC
| | - Jyun-Yu Peng
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan, ROC
| |
Collapse
|
16
|
Duan X, Luo M, Li J, Shen Z, Xie K. Overcoming therapeutic resistance to platinum-based drugs by targeting Epithelial–Mesenchymal transition. Front Oncol 2022; 12:1008027. [PMID: 36313710 PMCID: PMC9614084 DOI: 10.3389/fonc.2022.1008027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based drugs (PBDs), including cisplatin, carboplatin, and oxaliplatin, have been widely used in clinical practice as mainstay treatments for various types of cancer. Although there is firm evidence of notable achievements with PBDs in the management of cancers, the acquisition of resistance to these agents is still a major challenge to efforts at cure. The introduction of the epithelial-mesenchymal transition (EMT) concept, a critical process during embryonic morphogenesis and carcinoma progression, has offered a mechanistic explanation for the phenotypic switch of cancer cells upon PBD exposure. Accumulating evidence has suggested that carcinoma cells can enter a resistant state via induction of the EMT. In this review, we discussed the underlying mechanism of PBD-induced EMT and the current understanding of its role in cancer drug resistance, with emphasis on how this novel knowledge can be exploited to overcome PBD resistance via EMT-targeted compounds, especially those under clinical trials.
Collapse
Affiliation(s)
- Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| |
Collapse
|
17
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
18
|
Tao Y, Chen L, Pu F, Xie Z, Tong S, Yan J. An efficient high-speed countercurrent chromatography method for preparative isolation of highly potent anti-cancer compound antroquinonol from Antrodia camphorata after experimental design optimized extraction. J Sep Sci 2021; 44:2655-2662. [PMID: 33884745 DOI: 10.1002/jssc.202100162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
To avoid irreversible stationary phase adsorption and tedious and time-consuming separation steps, high-speed countercurrent chromatography was employed for the preparative separation of anti-tumor compound antroquinonol from solid fermentation culture of Antrodia camphorata for the first time. A Box-Behnken experimental design, based on three parameters including liquid-to-solid ratio, extraction time, and extraction temperature, was applied to optimize the ultrasonic extraction procedure. The optimal extraction condition was set as follows: liquid-to-solid ratio: 49.57:1; extraction time: 55.76 min; extraction temperature was arranged as 44.21°C. Meanwhile, an optimized solvent system containing petroleum ether, ethyl acetate, methanol, and water (4:1:4:1, v/v/v/v) was selected for the preparative separation of antroquinonol at a flow rate of 2.0 mL/min. The yield of isolated antroquinonol was determined to be 6.0 mg from 0.67 g of ethyl acetate extracts. The isolated antroquinonol was elucidated by ultra-high-performance liquid chromatography-tandem mass spectrometry, and NMR spectroscopy, and by comparison with literature data. The purity of isolated antroquinonol was determined to be 97.12%. This study confirmed that high-speed countercurrent chromatography was powerful and cost-effective for the preparative separation of the high-potently anti-tumor compound antroquinonol from solid fermentation culture of A. camphorata.
Collapse
Affiliation(s)
- Yi Tao
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China.,Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Lin Chen
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Faxiang Pu
- Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Zhangfu Xie
- Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Shengqiang Tong
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jizhong Yan
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
19
|
Ding R, Ning X, Ye M, Yin Y. Antrodia camphorata extract (ACE)-induced apoptosis is associated with BMP4 expression and p53-dependent ROS generation in human colon cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113570. [PMID: 33181285 DOI: 10.1016/j.jep.2020.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia camphorata (AC) is a rare functional fungus in Taiwan and is known as traditional Chinese medicine. It has been reported to inhibit proliferation and promote apoptosis in human cancer cells. AIM OF THE STUDY To investigate the potential mechanism of apoptosis induced in colon cancer cells by Antrodia camphorata extract (ACE). MATERIALS AND METHODS The MTT assay and crystal violet staining were used to determine relative cell viability in vitro at 24 and 48 h. The effects of ACE on apoptosis were determined by Hoechst 33342 staining and flow cytometric analysis following Annexin V-FITC/PI staining. The gene expression profile of HCT116 cells was assessed by the RNA sequencing system. In combination with RNA-seq data and qRT-PCR, Western blot analysis was used to evaluate expression of proteins. The intracellular ROS of HCT116 cells were determined using a DCFH-DA fluorescence probe. RESULTS ACE significantly reduces cell viability in a dose-dependent manner and triggers apoptosis. To explore the underlying mechanism, we performed transcriptome analysis of ACE-treated colon cancer HCT116 cells. Bioinformatics analyses showed that ACE treatment is associated with pathways in cancer. We further used Cytoscape to analyze hub genes in this network. Among them, BMP4, which is associated with cancer cell death through regulation of the tumor suppressor p53, was significantly decreased at both mRNA and protein levels in ACE treatment groups. We found that cell death is reversible via inactivation or knockdown of p53 gene and reduction of reactive oxygen species (ROS) generation in response to ACE exposure, indicating that p53 plays an important role in ROS generation induced by ACE. Meanwhile, ROS scavenger NAC was used to verify that cell death is reversible via reduction of ROS. CONCLUSION Our findings demonstrate that ACE has potential as an anticancer agent that induces apoptosis through BMP4 and p53-dependent response to ROS in human colon cancer.
Collapse
Affiliation(s)
- Ruqian Ding
- Beijing Advanced Innovation Center for Big-Data Precision Medicine, Beihang University, Beijing, 100083, China
| | - Xianling Ning
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
20
|
Chen Y, Zheng Z, Mei A, Huang H, Lin F. Claudin-1 and Claudin-3 as Molecular Regulators of Myelination in Leukoaraiosis Patients. Clinics (Sao Paulo) 2021; 76:e2167. [PMID: 34008771 PMCID: PMC8101689 DOI: 10.6061/clinics/2021/e2167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Leukoaraiosis is described as white matter lesions that are associated with cognitive dysfunction, neurodegenerative disorders, etc. Myelin depletion is a salient pathological feature of, and the loss of oligodendrocytes is one of the most robust alterations evident in, white matter degeneration. Recent studies have revealed that claudin proteins are aberrantly expressed in leukoaraiosis and regulate oligodendrocyte activity. However, the roles of claudin-1 and claudin-3 in oligodendrocytes and leukoaraiosis are still not well-defined. METHODS Quantitative polymerase chain reaction was used to measure the expression of claudin-1 (CLDN1), claudin-3 (CLDN3), and myelinogenesis-related genes such as myelin basic protein (MBP), proteolipid protein (PLP), oligodendrocyte transcription factor 2 (OLIG2), and SRY-box transcription factor 10 (SOX10) in leukoaraiosis patients (n=122) and healthy controls (n=122). The expression of claudin-1 and claudin-3 was either ectopically silenced or augmented in Oli-neu oligodendrocytes, and colony formation, apoptosis, and migration assays were performed. Finally, the expression of myelin proteins was evaluated by western blotting. RESULTS Our results revealed that in addition to SOX10, the expression levels of claudin-1, claudin-3, and myelinogenesis-related proteins were prominently downregulated in leukoaraiosis patients, compared to those in healthy controls. Furthermore, the growth and migration of Oli-neu cells were downregulated upon silencing claudin-1 or claudin-3. However, the overexpression of claudin-1 or claudin-3 resulted in the reduction of the degree of apoptosis in Oli-neu cells. In addition, claudin-1 and claudin-3 promoted the expression of MBP, OLIG2, PLP, and SOX10 at the translational level. CONCLUSION Our data has demonstrated that the abnormal expression of claudin-1 and claudin-3 regulates the pathological progression of leukoaraiosis by governing the viability and myelination of oligodendrocytes. These findings provide novel insights into the regulatory mechanisms underlying the roles of claudin-1 and claudin-3 in leukoaraiosis.
Collapse
Affiliation(s)
- Yan Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Zheng Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- *Corresponding author. E-mail:
| | - Ainong Mei
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Huan Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Fan Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| |
Collapse
|
21
|
Cheng C, Huang Z, Zhou R, An H, Cao G, Ye J, Huang C, Wu D. Numb negatively regulates the epithelial-to-mesenchymal transition in colorectal cancer through the Wnt signaling pathway. Am J Physiol Gastrointest Liver Physiol 2020; 318:G841-G853. [PMID: 32146835 DOI: 10.1152/ajpgi.00178.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors and is associated with a high mortality rate due to the lack of specific biomarkers available for early diagnosis, targeted therapies, and prognostic surveillance. In the present study, we investigated the function of Numb and its underlying mechanism in CRC. Immunohistochemical staining and clinicopathological analysis were used to assess the expression of Numb and its clinical significance in patients with CRC. Quantitative real-time polymerase chain reaction, cell proliferation, Western blot, wound healing, Transwell, and TOP/FOP flash reporter assays were used to investigate the function of Numb and its underlying mechanism in CRC. Numb expression was downregulated and negatively correlated with the depth of invasion, tumor size, metastasis, TNM stage, and epithelial-to-mesenchymal transition (EMT) markers in CRC specimens. Numb negatively regulates the EMT, proliferation, invasion, migration, and the Wnt signaling pathway in vitro, as well as tumor growth and metastasis in vivo. Furthermore, activation of the Wnt signaling pathway by Wnt-3A negated the effect of Numb overexpression, whereas inhibition of the Wnt signaling pathway by IWR-1 impaired the effect of the Numb knockdown on the EMT. We concluded that Numb downregulation is a common event in patients with CRC and is closely correlated with cancer progression and a poor prognosis. Numb functions as a tumor suppressor in CRC, and its tumor suppressor function is mediated by negative regulation of the EMT through the Wnt signaling pathway.NEW & NOTEWORTHY We investigate the function of Numb and its underlying mechanism in colorectal cancer through quantitative real-time polymerase chain reaction, cell proliferation, Western blot, wound healing, Transwell, and TOP/FOP flash reporter assays. We conclude that Numb can negatively regulate the epithelial-to-mesenchymal transition through the Wnt signaling pathway to inhibit the development of colorectal cancer.
Collapse
Affiliation(s)
- Chi Cheng
- Department of Gastrointestinal Surgery, Ruian People's Hospital, Ruian, Zhejiang, China
| | - Zhenfeng Huang
- Department of Gastrointestinal Surgery, Ruian People's Hospital, Ruian, Zhejiang, China
| | - Ruiyao Zhou
- Department of Gastrointestinal Surgery, Ruian People's Hospital, Ruian, Zhejiang, China
| | - Huimin An
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Gaojian Cao
- Department of Gastrointestinal Surgery, Ruian People's Hospital, Ruian, Zhejiang, China
| | - Jun Ye
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Chaolin Huang
- Department of Obstetrics and Gynecology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Daoyi Wu
- Department of Gastrointestinal Surgery, Ruian People's Hospital, Ruian, Zhejiang, China
| |
Collapse
|
22
|
Regulation of cancer cell signaling pathways as key events for therapeutic relevance of edible and medicinal mushrooms. Semin Cancer Biol 2020; 80:145-156. [DOI: 10.1016/j.semcancer.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
|
23
|
Zheng JH, Lin SR, Tseng FJ, Tsai MJ, Lue SI, Chia YC, Woon M, Fu YS, Weng CF. Clerodane Diterpene Ameliorates Inflammatory Bowel Disease and Potentiates Cell Apoptosis of Colorectal Cancer. Biomolecules 2019; 9:biom9120762. [PMID: 31766534 PMCID: PMC6995628 DOI: 10.3390/biom9120762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is general term for ulcerative colitis and Crohn's disease, which is chronic intestinal and colorectal inflammation caused by microbial infiltration or immunocyte attack. IBD is not curable, and is highly susceptible to develop into colorectal cancer. Finding agents to alleviate these symptoms, as well as any progression of IBD, is a critical effort. This study evaluates the anti-inflammation and anti-tumor activity of 16-hydroxycleroda-3,13-dien-15,16-olide (HCD) in in vivo and in vitro assays. The result of an IBD mouse model induced using intraperitoneal chemical azoxymethane (AOM)/dextran sodium sulfate (DSS) injection showed that intraperitoneal HCD adminstration could ameliorate the inflammatory symptoms of IBD mice. In the in vitro assay, cytotoxic characteristics and retained signaling pathways of HCD treatment were analyzed by MTT assay, cell cycle analysis, and Western blotting. From cell viability determination, the IC50 of HCD in Caco-2 was significantly lower in 2.30 μM at 48 h when compared to 5-fluorouracil (5-FU) (66.79 μM). By cell cycle and Western blotting analysis, the cell death characteristics of HCD treatment in Caco-2 exhibited the involvement of extrinsic and intrinsic pathways in cell death, for which intrinsic apoptosis was predominantly activated via the reduction in growth factor signaling. These potential treatments against colon cancer demonstrate that HCD could provide a promising adjuvant as an alternative medicine in combating colorectal cancer and IBD.
Collapse
Affiliation(s)
- Jia-Huei Zheng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
| | - Feng-Jen Tseng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
- Department of Orthopedics, Hualien Armed Force General Hospital, Hualien 97144, Taiwan
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei City 11217, Taiwan;
| | - Sheng-I Lue
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
- Department of Physiology & Master’s Program, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chen Chia
- Department of Food Science & Technology, Tajen University, Pingtung 90741, Taiwan;
| | - Mindar Woon
- Department of Radiation Oncology, Yeezen Hospital, Taoyuan 32645, Taiwan;
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
| | - Ching-Feng Weng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
- Correspondence: or ; Tel.: +886-3-8903609
| |
Collapse
|
24
|
Lu Z, Chang L, Zhou H, Liu X, Li Y, Mi T, Tong D. Arctigenin Attenuates Tumor Metastasis Through Inhibiting Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma via Suppressing GSK3β-Dependent Wnt/β-Catenin Signaling Pathway In Vivo and In Vitro. Front Pharmacol 2019; 10:937. [PMID: 31555129 PMCID: PMC6726742 DOI: 10.3389/fphar.2019.00937] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Arctigenin (ARG) has been reported to be a bioactive lignan from Arctium lappa exerting various activities including anti-cancer and immune-regulation. The present study aimed to investigate the anti-metastasis activity and mechanism of ARG against hepatocellular carcinoma in vitro and in vivo. The results showed that ARG exhibited a significant cytotoxicity on Hep G2 and SMMC 7721 cells (but not on normal liver cells LO2). In addition, the migration and invasion of Hep G2 and SMMC 7721 cells were also remarkably repressed. Furthermore, ARG attenuated Wnt/β-catenin signaling activation, resulting in the down-regulation of β-catenin target genes including c-Myc, cyclin D1, MMP-9, and ZO-1. Noticeably, ARG attenuated the activation of Wnt/β-catenin through a GSK3β-dependent pathway. Besides, we also found that ARG potentially inhibited epithelial-mesenchymal transition by up-regulating the epithelial and down-regulating the mesenchymal marker proteins. In vivo, intraperitoneal injection of ARG not only significantly inhibited the growth of subcutaneous transplanted tumor but also dramatically alleviated the tumor metastasis in liver. Our data demonstrated that ARG exerted anti-epithelial-mesenchymal transition and anti-metastasis activities against hepatocellular carcinoma, which might make it a candidate as a preventive agent for cancer metastasis.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongbo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinqian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiejun Mi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Hseu YC, Lin YC, Rajendran P, Thigarajan V, Mathew DC, Lin KY, Way TD, Liao JW, Yang HL. Antrodia salmonea suppresses invasion and metastasis in triple-negative breast cancer cells by reversing EMT through the NF-κB and Wnt/β-catenin signaling pathway. Food Chem Toxicol 2018; 124:219-230. [PMID: 30529123 DOI: 10.1016/j.fct.2018.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023]
Abstract
Antrodia salonea (AS), a fungus that is indigenous to Taiwan has been well known for its anti-cancer properties. We investigated the anti-metastatic and anti-epithelial-mesenchymal transition (EMT) properties of AS in TNBC cells. To determine their EMT and metastasis levels, in vitro wound healing, wound invasion, Western blotting, RT-PCR, luciferase activity and immunofluorescence assays were performed, while the in vivo anti-metastatic efficacy of AS was evaluated in BALB/c-nu mice through bioluminescence imaging, HE staining, and immunohistochemical staining. MDA-MB-231 cells, when treated with AS concentrations (25-100 μg/mL) resulted in significant reduction of invasion and migration as well as the downregulation of VEGF, uPAR, uPA and MMP-9 (inhibition of PI3K/AKT/NFκB pathways). AS treatment prevented morphological changes and reversed EMT through the upregulation of E-cadherin and the downregulation of N-cadherin, Slug, Twist, and Vimentin. Inhibition of Smad3 signaling pathway, downregulation of β-catenin pathway and upregulation of GSK3β expression were also observed while, suppression of metastasis and EMT in TGF-β1-stimulated non-tumorigenic MCF-10A cells was observed when treated with AS. Histological analysis confirmed that AS reduced tumor metastasis and upregulated E-cadherin expression in biopsied lung tissues. Our results indicated that AS exhibits anti-EMT and anti-metastatic activity, that could contribute to develop anticancer drugs against TNBC.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
| | - Yi-Chun Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Peramaiyan Rajendran
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Varadharajan Thigarajan
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
26
|
Hseu YC, Chang GR, Pan JY, Rajendran P, Mathew DC, Li ML, Liao JW, Chen WTL, Yang HL. Antrodia camphorata inhibits epithelial-to-mesenchymal transition by targeting multiple pathways in triple-negative breast cancers. J Cell Physiol 2018; 234:4125-4139. [PMID: 30146779 DOI: 10.1002/jcp.27222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/16/2018] [Indexed: 12/28/2022]
Abstract
Antrodia camphorata (AC) exhibits potential for engendering cell-cycle arrest as well as prompting apoptosis and metastasis inhibition in triple-negative breast cancer (TNBC) cells. We performed the current study to explore the anti-epithelial-to-mesenchymal transition (EMT) properties of fermented AC broth in TNBC cells. Our results illustrated that noncytotoxic concentrations of AC (20-60 μg/ml) reversed the morphological changes (fibroblastic-to-epithelial phenotype) as well as the EMT by upregulating the observed E-cadherin expression. Furthermore, we discovered treatment with AC substantially inhibit the Twist expression in human TNBC (MDA-MB-231) cells as well as in those that were transfected with Twist. In addition, we determined AC to decrease the observed Wnt/β-catenin nuclear translocation through a pathway determined to be dependent on GSK3β. Notably, AC treatment consistently inhibited the EMT by downregulating mesenchymal marker proteins like N-cadherin, vimentin, Snail, ZEB-1, and fibronectin; at that same time upregulating epithelial marker proteins like occludin and ZO-1. Bioluminescence imaging that was executed in vivo demonstrated AC substantially suppressed breast cancer metastasis to the lungs. Notably, we found that western blot analysis confirmed that AC decreased lung metastasis as demonstrated by upregulation of E-cadherin expression in biopsied lung tissue. Together with our results support the anti-EMT activity of AC, indicating AC as having the potential for acting as an anticancer agent for the treatment of human TNBC treatment.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Geng-Ruei Chang
- Institute of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Jian-You Pan
- Institute of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Peramaiyan Rajendran
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Mei-Ling Li
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Division of Colorectal Surgery, Department of Surgery, Center of Minimally Invasive Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Ling Yang
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Aras A, Khalid S, Jabeen S, Farooqi AA, Xu B. Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: Overview of the journey from benchtop to clinical trials. Food Chem Toxicol 2018; 119:206-214. [PMID: 29680270 DOI: 10.1016/j.fct.2018.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
Mushrooms represent a tremendous source of biologically useful and pharmacologically active molecules. Recent breakthroughs in cancer genetics, genomics, proteomics and translational research have helped us to develop a better understanding of the underlying mechanisms which are contributory in cancer development and progression. Different signaling pathways particularly, Wnt, SHH, TGF/SMAD and JAK/STAT have been shown to modulate cancer progression and development. Increasingly it is being realized that genetic/epigenetic mutations and loss of apoptosis also mandate a 'multi-molecular' perspective for the development of therapies to treat cancer. In this review we attempted to provide an overview of the regulation of different signaling pathways by mushrooms and their bioactive compounds. Regulation of Wnt and JAK-STAT pathways by mushrooms is deeply studied but we do not have comprehensive information about regulation of TGF/SMAD, Notch and TRAIL induced signaling pathways because of superficially available data. There are outstanding questions related to modulation of oncogenic and tumor suppressor microRNAs by mushrooms in different cancers. Therefore, detailed mechanistic insights related to targeting of multiple pathways by extracts or bioactive compounds from mushrooms will be helpful in bridging our current knowledge gaps and translation of medicinally precious bioactive molecules to clinically effective therapeutics.
Collapse
Affiliation(s)
- Aliye Aras
- Department of Botany, Faculty of Science, Istanbul University, Istanbul 34460, Turkey
| | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Saima Jabeen
- Department of Zoology, University of Gujrat, Sub-Campus, Rawalpindi, Pakistan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
28
|
Liu YM, Liu YK, Huang PI, Tsai TH, Chen YJ. Antrodia cinnamomea mycelial fermentation broth inhibits the epithelial-mesenchymal transition of human esophageal adenocarcinoma cancer cells. Food Chem Toxicol 2018; 119:380-386. [PMID: 29475041 DOI: 10.1016/j.fct.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
Esophageal cancer is associated with a high mortality rate and easy metastasis. The aim of this study is to investigate the effect of the bio-product Antrodia cinnamomea mycelial fermentation broth (AC-MFB) on the epithelial mesenchymal transition (EMT) of human esophageal cancer cells and the molecular mechanisms underlying these effects. Transforming growth factor β (TGF-β) was used to induce EMT in human esophageal BE3 cancer cells. Changes in cell morphology and migration potential were examined. The expression of E-cadherin, N-cadherin, vimentin, and other transcriptional factors was studied by western blot assay. The results showed that AC-MFB was not only able to upregulate the expression of Ecadherin and attenuate the TGF-β-induced overexpression of vimentin and N-cadherin, but it also reversed the TGF-β-induced changes in cell morphology from polygonal to spindle-shaped and delayed the migration potential of BE3 cells. Furthermore, AC-MFB treatment was able to inhibit the expression levels of both Twist and Twist1. Overall, AC-MFB was able to inhibit the EMT of esophageal cancer BE3 cells, which was accompanied by Twist and Twist1 downregulation.
Collapse
Affiliation(s)
- Yu-Ming Liu
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan; School of Medicine, Institute of Traditional Medicine, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei 112, Taiwan; School of Medicine, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei 112, Taiwan
| | - Yu-Kuo Liu
- Department of Chemical and Material Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
| | - Pin-I Huang
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan; School of Medicine, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei 112, Taiwan
| | - Tung-Hu Tsai
- School of Medicine, Institute of Traditional Medicine, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei 112, Taiwan.
| | - Yu-Jen Chen
- School of Medicine, Institute of Traditional Medicine, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei 112, Taiwan; Department of Medical Research, China Medical University Hospital, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Radiation Oncology, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City 25160, Taiwan.
| |
Collapse
|
29
|
Deng JS, Chang JS, Liao JC, Chao W, Lee MM, Cheng CH, Huang GJ. Actinidia callosa var. callosa suppresses metastatic potential of human hepatoma cell SK-Hep1 by inhibiting matrix metalloproteinase-2 through PI3K/Akt and MAPK signaling pathways. BOTANICAL STUDIES 2018; 59:3. [PMID: 29356905 PMCID: PMC5778090 DOI: 10.1186/s40529-017-0216-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cancer cell metastasis involving multi-step procedures and cytophysiological property changes may make difficult in the clinical management and death rate increasing. RESULTS In this study, we first observed that ethyl acetate fraction of Actinidia callosa var. callosa (EAAC) carry out a dose-dependent inhibitory effect without cytotoxicity on the mobility and invasion of highly metastatic SK-Hep1 cells. To investigate the EAAC in cancer metastasis, SK-Hep1 cells were treated with EAAC at various concentrations and then subjected to gelatin zymography, casein zymography and western blot to study the impacts of EAAC on metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1/2 (TIMP-1/2), respectively. Our results showed that EAAC treatment may decrease the expressions of MMP-2 and enhance the expression of TIMP-1/2 in a concentration-dependent manner. EAAC also inhibited effect on the phosphorylation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase/serine/threonine protein kinase [or protein kinase B (PI3K/Akt)] and focal adhesion kinase (FAK). CONCLUSIONS These results indicate that EAAC inhibited SK-Hep1 cell of metastasis by reduced protein level of MMP-2 through the suppression of MAPK and FAK signaling pathway and of the activity of PI3K/Akt. These findings suggest that EAAC may be used as an antimetastatic agent.
Collapse
Affiliation(s)
- Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Jui-Shu Chang
- School of Chinese Medicine, Graduate Institute of Integrated Medicine College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Chun Liao
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wei Chao
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Ming Lee
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Hua Cheng
- Department of Visual Communication Design, Asia University, Taichung, Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|