1
|
Zhu H, Li C, Jia L, Qiao J, El-Seedi HR, Zhang Y, Zhang H. Supercritical CO 2 extracts of propolis inhibits tumor proliferation and Enhances the immunomodulatory activity via activating the TLR4-MAPK/NF-κB signaling pathway. Food Res Int 2024; 196:115137. [PMID: 39614528 DOI: 10.1016/j.foodres.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 12/01/2024]
Abstract
Propolis is a natural immunomodulator with anticancer activity. This study investigated the immunomodulatory mechanism and anti-tumor activity of supercritical CO2 extracts of propolis (SEP) in tumor-bearing immunosuppression mice. We used cyclophosphamide (CTX) to construct the immunosuppressive mice model and then inoculated them with CT26 cells to build the CT26 tumor-bearing immunosuppression mice model. Upon treatment with SEP, tumor proliferation in mice was markedly suppressed, with tumor volumes decreasing from 1881.43 mm3 to 1049.95 mm3 and weights reducing from 2.07 g to 1.13 g. Concurrently, the immune system recovered well, and the spleen and thymus indexes increased significantly. The total T lymphocyte (CD3+ T cell) contents in the spleen and blood recovered from 11.88 % to 21.19 % and 15.32 % to 22.19 %, respectively. In addition, the CD4+ /CD8+ ratio has returned to a healthy level, 3.12 in the spleen and 5.42 in the blood. The levels of IL-1β, IL-6, and TNF-α were increased by 2.17, 2.76, and 7.15 times in the spleen, 2.76, 1.92, and 3.02 times in the serum. Moreover, the western blot results showed that SEP treatment increased the expression of toll-like receptor 4 (TLR4) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p65. These results indicated that SEP activated the immune activity of RAW 264.7 macrophages through the TLR4-mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway to exert immunomodulatory function and inhibit tumor proliferation. This study facilitated the further application of SEP as a potential immunomodulatory and anti-tumor functional food.
Collapse
Affiliation(s)
- Hequan Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunyang Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Lei Jia
- Xingjiang Yifan Biotechnology Co., LTD, Ili Kazakh Autonomous Prefecture, 835000, China
| | - Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Jiangsu Beevip Biotechnology Co., LTD, Taizhou 225300, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
2
|
Song Y, Sun M, Ma F, Xu D, Mu G, Jiao Y, Yu P, Tuo Y. Lactiplantibacillus plantarum DLPT4 Protects Against Cyclophosphamide-Induced Immunosuppression in Mice by Regulating Immune Response and Intestinal Flora. Probiotics Antimicrob Proteins 2024; 16:321-333. [PMID: 36715883 DOI: 10.1007/s12602-022-10015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/31/2023]
Abstract
In this study, the strain Lactiplantibacillus plantarum DLPT4 was investigated for the immunostimulatory activity in cyclophosphamide (CTX)-induced immunosuppressed BALB/c mice. L. plantarum DLPT4 was administered to BALB/c mice by oral gavage for 30 days, and CTX was injected intraperitoneally from the 25th to the 27th days. Intraperitoneal injection of CTX caused damage to the thymic cortex and intestines, and the immune dysfunction of the BALB/c mice. L. plantarum DLPT4 oral administration exerted immunoregulating effects evidenced by increasing serum immunoglobulin (IgA, IgG, and IgM) levels and reducing the genes expression of pro-inflammatory factors (IL-6, IL-1β, and TNF-α) of the CTX-induced immunosuppressed mice. The results of the metagenome-sequencing analysis showed that oral administration of L. plantarum DLPT4 could regulate the intestinal microbial community of the immunosuppressed mice by changing the ratio of Lactiplantibacillus and Bifidobacterium. Meanwhile, the abundance of carbohydrate enzyme (CAZyme), immune diseases metabolic pathways, and AP-1/MAPK signaling pathways were enriched in the mice administrated with L. plantarum DLPT4. In conclusion, oral administration of L. plantarum DLPT4 ameliorated symptoms of CTX-induced immunosuppressed mice by regulating gut microbiota, influencing the abundance of carbohydrate esterase in the intestinal flora, and enhancing immune metabolic activity. L. plantarum DLPT4 could be a potential probiotic to regulate the immune response.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Dongxue Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yang Jiao
- College of Life Science and Engineering of Hexi University, Zhangye, 734000, People's Republic of China
| | - Ping Yu
- High Change (Shenyang) Child-Food Products Co, Ltd, Shenyang, 110011, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| |
Collapse
|
3
|
Zhang H, Xiao F, Li J, Han R, Li G, Wan Z, Shao S, Zhao D, Yan M. Immunomodulatory activity of semen Ziziphi Spinosae protein: a potential plant protein functional food raw material. NPJ Sci Food 2023; 7:32. [PMID: 37336871 DOI: 10.1038/s41538-023-00204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Semen Ziziphi Spinosae protein (SZSP) is a new plant protein resource with good food functional properties and health care function. However, the biological activity of SZSP has not been further studied, which greatly limits the development and utilization of SZSP in the food industry. The aim of this study was to investigate the protective effect of SZSP on immunosuppressed mice and its inhibitory effect on immune-stimulated RAW264.7 cells. The results demonstrated that SZSP remarkably improved the immunomodulatory secretion in serum (interleukin-2, tumor necrosis factor-α [TNF-α], interferon-γ, immunoglobulin-A, immunoglobulin-G, immunoglobulin-M) and primary macrophages (nitric oxide, interleukin-1β, TNF-α) and promoted the NK-cell killing activity of primary splenocytes in CTX-induced immunosuppression mice. Immunohistochemical analysis results indicated that the secretion of CD4+ and CD8+ in the spleen and thymus can be regulated by SZSP, leading to inhibition of the damage induced by cyclophosphamide in mice. Meanwhile, in order to clarify the immunomodulatory mechanism of SZSP, we showed that SZSP significantly inhibited the secretion of NO, interleukin-6, and TNF-α and reduced the phosphorylation expression of p-ERK, p-JNK, and p-IκBα in lipopolysaccharide-stimulated RAW264.7 cells. Therefore, the immunomodulatory effect of SZSP may be related to the activation of MAPKs and NF-κB signaling pathways. Based on the above studies, the preliminary purification of SZSP was continued, and S1F2G1 with immunomodulatory activity was obtained. Taken together, SZSP has an immunoregulatory effect in vivo and in vitro and may be a favorable candidate of functional food raw material for regulating immune responses.
Collapse
Affiliation(s)
- Hongyin Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Fengqin Xiao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jia Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Rongxin Han
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangzhe Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
- Jinlin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhiqiang Wan
- Changchun University of Chinese Medicine, Changchun, Jilin, China
- Jinlin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shuai Shao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
- Jinlin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin, China.
- Jinlin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, Jilin, China.
- Jinlin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
4
|
Deng W, Liu H, Guo L, Liu Y, Ma Z. Panax ginseng abuse exhibits a pro-inflammatory effect by activating the NF-κB pathway. Food Sci Nutr 2023; 11:2130-2140. [PMID: 37181298 PMCID: PMC10171492 DOI: 10.1002/fsn3.3011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
P. ginseng (Panax ginseng C. A. Meyer) is a well-known traditional medicine that has been used for thousands of years to treat diseases. However, "ginseng abuse syndrome" (GAS) often occurs due to an inappropriate use such as high-dose or long-term usage of ginseng; information about what causes GAS and how GAS occurs is still lacking. In this study, the critical components that potentially caused GAS were screened through a step-by-step separation strategy, the pro-inflammatory effects of different extracts on messenger RNA (mRNA) or protein expression levels were evaluated in RAW 264.7 macrophages through quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot, respectively. It was found that high-molecular water-soluble substances (HWSS) significantly increased the expression of cytokines (cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6)) and cyclooxygenase 2 (COX-2) protein; gel filtration chromatography fraction 1 (GFC-F1) further purified from HWSS showed prominent pro-inflammatory effects by increasing the transcription of cytokines (COX-2, iNOS, tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β)) as well as the expression of COX-2 and iNOS protein. Moreover, GFC-F1 activated nuclear factor-kappa B (NF-кB) (p65 and inhibitor of nuclear factor-kappa B alpha (IκB-α)) and the p38/MAPK (mitogen-activated protein kinase) signaling pathways. On the other hand, the inhibitor of the NF-κB pathway (pyrrolidine dithiocarbamate (PDTC)) reduced GFC-F1-induced nitric oxide (NO) production, while the inhibitors of the MAPK pathways did not. Taken together, GFC-F1 is the potential composition that caused GAS through the production of inflammatory cytokines by activating the NF-кB pathway.
Collapse
Affiliation(s)
- Wenjun Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and ForestryHuazhong Agricultural UniversityWuhanChina
| | - Hangxiu Liu
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Lanping Guo
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yongzhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and ForestryHuazhong Agricultural UniversityWuhanChina
| | - Zhaocheng Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and ForestryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Ameliorative Effect of Citrus Lemon Peel Extract and Resveratrol on Premature Ovarian Failure Rat Model: Role of iNOS/Caspase-3 Pathway. Molecules 2022; 28:molecules28010122. [PMID: 36615313 PMCID: PMC9822383 DOI: 10.3390/molecules28010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Premature ovarian failure (POF) is described as a loss of oocytes and the absence of folliculogenesis and is considered an adverse effect of chemotherapeutic drugs, which leads to infertility. Subsequently, the existing inquiry was achieved by exploring the potential suspicious influences of lemon peel extract (LPE), and resveratrol (RES) on cyclophosphamide (CPA) induced-POF. The results showed that CPA-induced POF significantly decreased serum estradiol (E2) and progesterone levels, along with a considerable rise in serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Moreover, CPA administration to rats significantly increased the serum level of Malondialdehyde (MDA) and significantly lowered the levels of reduced glutathione (GSH) and superoxide dismutase (SOD); in addition, it increased nuclear factor kappa B (NF-κB) levels, tumor necrosis factor-α (TNF-α), as well as cyclooxygenase 2 (COX-2) with the spread expression of inducible nitric oxide synthase (iNOS) mRNA levels and caspase-3 (Casp3) levels in ovarian tissues versus the control rats. However, treatment with LPE and RES suppressed the triggering of NF- κB pathways, evidenced by a considerable reduction in Casp3 & iNOS mRNA expression level and significant ameliorative effects in all evaluated parameters, as confirmed by the histological and immunohistochemical investigation when comparing the model group. In overall findings, both lemon peel extract and resveratrol can mitigate the adverse effects of CPA-induced POF. Most crucially, its combination therapy is a promising pharmacological agent for this disease.
Collapse
|
6
|
Jeon H, Oh S, Kum E, Seo S, Park Y, Kim G. Immunomodulatory Effects of an Aqueous Extract of Black Radish on Mouse Macrophages via the TLR2/4-Mediated Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1376. [PMID: 36355548 PMCID: PMC9697478 DOI: 10.3390/ph15111376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 10/14/2023] Open
Abstract
Here, we determined the immunostimulatory effects of black radish (Raphanus sativus ver niger) hot water extract (BRHE) on a mouse macrophage cell line (RAW 264.7) and mouse peritoneal macrophages. We found that BRHE treatment increased cell proliferation, phagocytic activity, nitric oxide (NO) levels, cytokine production, and reactive oxygen species synthesis. Moreover, BRHE increased the expression of the following immunomodulators in RAW 264.7 cells and peritoneal macrophages: pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), iNOS, and COX-2. BRHE treatment significantly up-regulated the phosphorylation of components of the mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Akt, and STAT3 signaling pathways. Further, the effects of BRHE on macrophages were significantly diminished after the cells were treated with the TLR2 antagonist C29 or the TLR4 antagonist TAK-242. Therefore, BRHE-induced immunostimulatory phenotypes in mouse macrophages were reversed by multiple inhibitors, such as TLR antagonist, MAPK inhibitor, and Akt inhibitor indicating that BRHE induced macrophage activation through the TLR2/4-MAPK-NFκB-Akt-STAT3 signaling pathway. These results indicate that BRHE may serve as a potential immunomodulatory factor or functional food and provide the scientific basis for the comprehensive utilization and evaluation of black radish in future applications.
Collapse
Affiliation(s)
- Hyungsik Jeon
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Soyeon Oh
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Eunjoo Kum
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Sooyeong Seo
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Youngjun Park
- Jeju Research Institute of Pharmaceutical, College of Pharmacy, Jeju National University, Jeju 63243, Korea
| | - Giok Kim
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| |
Collapse
|
7
|
Wang T, Tao Y, Lai C, Huang C, Ling Z, Yong Q. Influence of glycosyl composition on the immunological activity of pectin and pectin-derived oligosaccharide. Int J Biol Macromol 2022; 222:671-679. [PMID: 36174858 DOI: 10.1016/j.ijbiomac.2022.09.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Factors causing differences in immune activities between pectin and pectin-derived oligosaccharides have not been fully studied. In this article, four samples with different molecular weights and monosaccharide compositions, including polygalacturonic acid (poly-GA) and its oligosaccharide (oligo-GA), navel orange peel pectin (NP) and its oligosaccharide (oligo-NP), were used to compare their immunomodulatory properties on RAW264.7 cells. All samples had nontoxic effect on cells, oligo-GA and oligo-NP could increase the production of nitric oxide and cytokines to a much higher level than poly-GA and NP. The findings revealed that reducing the molecular weight and preserving the branched regions of pectin-derived samples could improve their immune-enhancing effects on macrophages. Interestingly, the addition of TAK-242 (TLR4 inhibitor) also demonstrated that the tested pectin oligosaccharides could stimulate the activation of macrophages through TLR4 signaling pathway. These results confirmed the potential value of pectin oligosaccharides, and provided theoretical support for their application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Gao X, Zeng R, Qi J, Ho CT, Li B, Chen Z, Chen S, Xiao C, Hu H, Cai M, Xie Y, Wu Q. Immunoregulatory activity of a low-molecular-weight heteropolysaccharide from Ganoderma leucocontextum fruiting bodies in vitro and in vivo. Food Chem X 2022; 14:100321. [PMID: 35571333 PMCID: PMC9092982 DOI: 10.1016/j.fochx.2022.100321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022] Open
Abstract
The chemical structure of GLP-1, a novel water-soluble heteropolysaccharide purified Ganoderma leucocontextum fruiting bodies, has been characterized in our previous study. This study aimed to investigate the immunostimulatory activity of GLP-1 in vitro and in vivo by using RAW264.7 macrophages and cyclophosphamide-induced immunosuppressed mice model. Results showed that GLP-1 was able to enhance phagocytic activity and promote the production of reactive oxygen species, nitric oxide, tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 in RAW264.7 macrophages. Moreover, GLP-1 could activate mitogen-activated protein kinase, phosphatidylinositol-3-kinase/protein kinase B, and nuclear factor-kappa B signaling pathways through toll-like receptor 2 and dectin-1 receptors. Furthermore, GLP-1 increased the thymus index, serum immunoglobulin levels, and percentage of CD3+ T lymphocytes in cyclophosphamide-induced immunosuppressed mice. These results demonstrated that GLP-1 possessed significant immunostimulatory effects in vivo and in vitro and could be developed as an effective immunomodulator for application in functional foods.
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ranhua Zeng
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Jiayi Qi
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Shaodan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Manjun Cai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.,Guangdong Yuewei Biotechnology Co. Ltd., Zhaoqing 526000, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
9
|
Zhang J, Rho Y, Kim MY, Cho JY. TAK1 in the AP-1 pathway is a critical target of Saururus chinensis (Lour.) Baill in its anti-inflammatory action. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114400. [PMID: 34245837 DOI: 10.1016/j.jep.2021.114400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saururus chinensis (Lour.) Baill (Saururaceae), also known as Asian lizard's tail, is a plant commonly found in East Asia. Its leaves have been used in traditional medicine to treat many diseases such as edema, pneumonia, hypertension, leproma, jaundice, gonorrhea, and rheumatoid arthritis. AIM OF THE STUDY Based on the efficacies of S. chinensis, the anti-inflammatory effects of this plant and the molecular mechanism were evaluated using the ethanol extract of S. chinensis leaves (Sc-EE). MATERIALS AND METHODS The production of pro-inflammatory mediators and cytokines in response to Sc-EE was evaluated using Griess and semi-quantitative reverse transcription-polymerase chain reactions. Furthermore, relevant proteins including c-Jun, c-Fos, p38, JNK, ERK, MEK1/2, MKK3/6, MKK4/7, and TAK1 were detected through immunoblotting. RESULTS Sc-EE diminished production of nitric oxide (NO); decreased expression levels of cyclooxygenase (COX)-2, interleukin (IL)-6, inducible NO synthase (iNOS), and IL-1β in LPS-stimulated RAW264.7 cells; and attenuated activator protein 1 (AP-1)-mediated luciferase activities. The extract markedly downregulated the phosphorylation of TAK1, upregulated thermal stability of TAK1, and reduced TAK1/AP-1-mediated luciferase activity in LPS-treated RAW264.7 cells and TAK1-overexpressing HEK293T cells. CONCLUSIONS These results demonstrated that Sc-EE suppresses pro-inflammatory gene expression through blockade of the TAK1/AP-1 pathway in LPS-treated RAW264.7 macrophages, implying that inhibition of TAK1/AP-1 signaling by S. chinensis is a key event in its anti-inflammatory activity.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yangkook Rho
- Development Center, Dadang and Bio Co., Suwon, 16679, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Zhou J, Zhang J, Li J, Guan Y, Shen T, Li F, Li X, Yang X, Hu W. Ginsenoside F2 Suppresses Adipogenesis in 3T3-L1 Cells and Obesity in Mice via the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9299-9312. [PMID: 34342980 DOI: 10.1021/acs.jafc.1c03420] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ginsenoside F2 (GF2) is a protopanaxdiol saponin from Panax ginseng leaves and possesses many potential pharmacological properties. GF2 may prevent obesity by directly binding to the peroxisome proliferator-activated receptor-γ (PPARγ) and inhibiting adipocyte differentiation. However, the mechanism by which GF2 alleviates obesity is unknown. We therefore explored the anti-adipogenesis and anti-obesity effects of GF2 in vitro and in vivo. GF2 inhibited differentiation and reduced the triglyceride (TG) content of 3T3-L1 preadipocytes in the early stage of adipogenesis. Administration of GF2 (50 and 100 mg/kg) to obese mice for 4 weeks reduced the body weight gain, weight of adipose tissues, adipocyte size, and total cholesterol, TG, and AST levels in serum. RNA sequencing and real-time quantitative PCR indicated that GF2 decreased the expression levels of adipokines, including PPARγ, fatty acid synthase, and adiponectin. KEGG enrichment and western blot analyses demonstrated that GF2 accelerated the phosphorylation of AMPK and ACC in vitro and in vivo. Moreover, GF2 promoted the biosynthesis of mitochondria in 3T3-L1 adipocytes and increased the expression of antioxidant enzymes such as SOD and GSH-Px in the liver of obese mice. Therefore, GF2 suppressed adipogenesis and obesity by regulating the expression of adipokines and activating the AMPK pathway. Hence, the findings suggest that GF2 may have potential therapeutic implications to treat obesity.
Collapse
Affiliation(s)
- Jing Zhou
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Jiayi Li
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Yiqiu Guan
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Ting Shen
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Chengdu PhytoElite Bio-Technology Company Limited, Chengdu 610213, China
| | - Xueqin Li
- Department of General Practice, The Affiliated Huaian NO. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Xiaojun Yang
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
11
|
Li H, Wang Y, Zhang D, Chen T, Hu A, Han X. Glycemic fluctuation exacerbates inflammation and bone loss and alters microbiota profile around implants in diabetic mice with experimental peri-implantitis. Int J Implant Dent 2021; 7:79. [PMID: 34401982 PMCID: PMC8368769 DOI: 10.1186/s40729-021-00360-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impact of glycemic fluctuation under diabetic condition on peri-implantitis in diabetic patients remains unclear. We hypothesized that glycemic fluctuation has greater adverse effect on experimental peri-implantitis, compared with sustained high blood glucose in diabetes. RESULTS Maxillary left first and second molars of diabetic db/db mice were extracted and were replaced with one dental implant in the healed edentulous space. Glycemic control or fluctuation were managed by constant or interrupted oral administration of rosiglitazone to these mice. Meanwhile, experimental peri-implantitis was induced by ligation around implants. After 14 weeks, inflammatory responses, and peri-implant bone loss, together with oral microbiota profile were analyzed. Diabetic mice with glycemic fluctuation showed greater peri-implant bone loss, inflammatory cell infiltration, and osteoclastogenesis, compared with mice with sustained hyperglycemia. Compared to sustained hyperglycemia, glycemic fluctuation led to further increase in IL-1β, TNFα, RANKL, TLR2/4, IRAK1, and TRAF6 mRNA expression in peri-implant gingival tissues. Both rosiglitazone-induced glycemic control and glycemic fluctuation caused microbiota profile change in diabetic mice compared to that in uncontrolled hyperglycemic mice. CONCLUSIONS This study suggests that glycemic fluctuation may aggravate peri-implantitis inflammation and bone loss, which may be associated with a shift in peri-implant microbial profile towards dysbiotic changes and the activation of TLR2/4-IRAK1-TRAF6 signaling.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, the Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
| | - Yufeng Wang
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
- Department of Oral Mucosal Diseases, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Dong Zhang
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
- Department of Oral Surgery, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, 188 Longwood Avenue, Boston, 02115, USA
| | - Arthur Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA.
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, 188 Longwood Avenue, Boston, 02115, USA.
| |
Collapse
|
12
|
Eo HJ, Park GH, Jeong JB. In vitro macrophage activation by Sageretia thea fruits through TLR2/TLR4-dependent activation of MAPK, NF-κB and PI3K/AKT signalling in RAW264.7 cells. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2020.1857339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Gwang Hun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, Republic of Korea
| |
Collapse
|
13
|
Zhang J, He Y, Zhou J, Shen T, Hu W. Immunomodulatory effects of wheat bran arabinoxylan on RAW264.7 macrophages via the NF-κB signaling pathway using RNA-seq analysis. Food Res Int 2020; 140:110067. [PMID: 33648290 DOI: 10.1016/j.foodres.2020.110067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Arabinoxylan (AX) extracted from wheat bran has attracted much attention due to its immunomodulatory activity. However, the molecular mechanisms underlying this activity remain unclear. In this study, we conducted a comprehensive transcriptional study to investigate genetic changes related to AX and identified 2325 differentially expressed genes (DEGs). Gene Ontology classification revealed that the DEGs were mainly enriched in a series of immune-related processes. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that immune-related pathways were significantly enriched in top 20 pathways, including the nuclear factor-kappa B (NF-κB) signaling pathway and the TNF signaling pathway. Validation using quantitative polymerase chain reaction analysis revealed dynamic changes in the mRNA levels of immune-related Cd40, Csf1, Csf2, Fas, IL-1β, IL-6, IL-5, Irf1, and Tnfaip3, which were significantly up-regulated in the AX-treated group. Moreover, AX treatment led to the up-regulation of the nuclear translocation of NF-κB and its upstream target proteins such as PDK1, Akt, IκB-α, and GSK-3β. The dataset compiled from this study provides valuable information for further research on the complex molecular mechanisms associated with AX and the identification of target genes.
Collapse
Affiliation(s)
- Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Yang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Jing Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Ting Shen
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China.
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China.
| |
Collapse
|
14
|
Wang Y, Jia Q, Zhang Y, Wei J, Liu P. Amygdalin Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and Bone Marrow-Derived Macrophages. Front Pharmacol 2020; 11:590929. [PMID: 33192531 PMCID: PMC7658180 DOI: 10.3389/fphar.2020.590929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Amygdalin, the main component of Prunus persica (L.) Stokes, has been used to treat atherosclerosis in mouse model due to its anti-inflammatory role. However, the underlying mechanism remains poorly understood. This study aimed to evidence the influence of amygdalin on high-fat diet-induced atherosclerosis in ApoE knock-out (ApoE−/−) mice, and unravel its anti-inflammatory mechanism. ApoE−/− mice fed with high-fat diet for eight weeks were randomly divided into four groups and injected with amygdalin at the concentration of 0.08 or 0.04 mg/kg for 12 weeks. Additionally, bone marrow-derived macrophages were intervened with oxidized low-density lipoprotein (oxLDL) or lipopolysaccharide plus various concentrations of amygdalin for further exploration. Body weight, serum lipid profiles and inflammatory cytokines were detected by ELISA, gene expression by RT-PCR, plaque sizes by Oil Red O, lymphatic vessels of heart atrium and Tnfα production by immunofluorescence staining. MAPKs, AP-1 and NF-κB p65 pathways were also explored. Amygdalin decreased body weight, serum lipids, plaque size, lymphatic vessels and inflammatory cytokines (Il-6, Tnfα), Nos1 and Nos2, and increased Il-10 expression in ApoE−/− mice. In oxLDL-induced bone marrow-derived macrophages, amygdalin reduced inflammatory cytokines (Il-6, Tnfα), Nos1 and Nos2, and increased Il-10 production. These effects were associated with the decreased phosphorylation of Mapk1, Mapk8, Mapk14, Fos and Jun, and the translocation of NF-κB p65 from nucleus to cytoplasm. The results suggested that amygdalin could attenuate atherosclerosis and play an anti-inflammatory role via MAPKs, AP-1 and NF-κB p65 signaling pathways in ApoE−/− mice and oxLDL-treated bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wei
- Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Abdusalam A, Zhang Y, Abudoushalamu M, Maitusun P, Whitney C, Yang XF, Fu Y. Documenting the heritage along the Silk Road: An ethnobotanical study of medicinal teas used in Southern Xinjiang, China. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113012. [PMID: 32464318 DOI: 10.1016/j.jep.2020.113012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE People in Southern Xinjiang, China have been consuming medicinal teas for healthcare since before the ancient Silk Road markets began. Several pharmaceutical studies have illustrated the potential healthcare benefits of medicinal teas used in Southern Xinjiang, China. However, little information is available from the literature about the diversity of the species used and related traditional knowledge of these medicinal teas. AIMS OF THE STUDY (i) create a comprehensive record of medicinal tea plant species (MTPS) and combinations used with related traditional knowledge for healthcare in Southern Xinjiang, China; (ii) assess safety of MTPS, and (iii) address conservation status for sustainable use of MTPS. MATERIALS AND METHODS We employed both field and market surveys from 2014 to 2019 in 10 counties/cities and four main medicinal tea markets by using semi-structured interviews. We interviewed 236 informants and 70 medicinal tea shop vendors. The commonly used MTPS were ranked by Frequency of Citation. Safety issues were assessed based on expert knowledge and with reference to the official list of Medicinal Plants Used as Food. Conservation implications of plant use were assessed as part of the interviews and this was cross referenced with official records. RESULTS The surveys revealed 145 different plants from 65 families used for making medicinal teas, expanding the list of known Chinese herbal tea species from 782 to 884. Leguminosae, Rosaceae, Lamiaceae and Apiaceae were dominant families. Herbs (60.7%, 88 species) were the most commonly used plant types; fruits (23.1%, 50 species) and seeds (22.2%, 48 species) were commonly used parts. Nearly half (42.1%) of the plant species were introduced from abroad. Respondents reported more than 50 types of healthcare uses of medicinal teas. Tonic (13.7%, 71 species) and promoting digestion (9.6%, 50 species) were the most frequently mentioned healthcare uses. The majority of commonly used plant species were spices (20 species, 50%) and aromatic plants (10 species, 25%). Cinnamomum cassia (L.) J.Presl, Piper longum L. Syzygium aromaticum (L.) Merr. & L. M. Perry and Gardenia jasminoides J. Ellis were the most cited species. High doses of Piper longum L., Crocus sativus L., Curcuma longa L, and Senna alexandrina Mill. May have negative health implications. Assessments of conservation status and sustainable use of tea species indicate that wild harvesting of Nardostachys jatamansi (D. Don) DC. and Pterocarpus indicus Willd. Should be controlled and cultivation technologies should be improved. CONCLUSIONS We found high plant species diversity and rich traditional knowledge of medicinal teas used in Southern Xinjiang, China. The traditional healthcare uses of some of the medicinal teas are also supported by pharmaceutical evidence. Others should be investigated further. Conservation pressures exist for commonly used wild species. China's 'Healthy China 2030' policy should do more to take traditional cultural practices into account. In doing so, both local and national government agendas may seek to promote sustainable harvest and to protect traditional knowledge so that this cultural heritage continues to serve human well-being into the future.
Collapse
Affiliation(s)
- Aysajan Abdusalam
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, Xinjiang, 844000, China
| | - Yu Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | | | - Patiguli Maitusun
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, Xinjiang, 844000, China
| | - Cory Whitney
- Department of Horticultural Sciences (INRES) / Center for Development Research (ZEF),University of Bonn, Bonn, 53121, Germany
| | - Xue-Fei Yang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Yao Fu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.
| |
Collapse
|
16
|
Geum NG, Eo HJ, Kim HJ, Park GH, Son HJ, Jeong JB. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264.7 cells and immunosuppressed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Li T, Chen L, Wu D, Dong G, Chen W, Zhang H, Yang Y, Wu W. The Structural Characteristics and Biological Activities of Intracellular Polysaccharide Derived from Mutagenic Sanghuangporous sanghuang Strain. Molecules 2020; 25:molecules25163693. [PMID: 32823661 PMCID: PMC7464456 DOI: 10.3390/molecules25163693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Sanghuangporous sanghuang is a rare medicinal fungus which contains polysaccharide as the main active substance and was used to treat gynecological diseases in ancient China. The intracellular polysaccharide yield of S. sanghuang was enhanced by the strain A130 which was screened from mutant strains via atmospheric and room temperature plasma (ARTP) mutagenesis. The objective of this research was to investigate the effects of ARTP mutagenesis on structural characteristics and biological activities of intracellular polysaccharides from S. sanghuang. Six intracellular polysaccharide components were obtained from S. sanghuang mycelia cultivated by the mutagenic strain (A130) and original strain (SH1), respectively. The results revealed that the yields of polysaccharide fractions A130-20, A130-50 and A130-70 isolated from the mutagenic strain fermentation mycelia were significantly higher than those of the original ones by 1.5-, 1.3- and 1.2-fold, and the clear physicochemical differences were found in polysaccharide fractions precipitated by 20% ethanol. A130-20 showed a relatively expanded branching chain with higher molecular weight and better in vitro macrophage activation activities and the IL-6, IL-1, and TNF-α production activities of macrophages were improved by stimulation of A130-20 from the mutagenic strain. This study demonstrates that ARTP is a novel and powerful tool to breed a high polysaccharide yield strain of S. sanghuang and may, therefore, contribute to the large-scale utilization of rare medicinal fungi.
Collapse
Affiliation(s)
- Tingting Li
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China;
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (L.C.); (G.D.)
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (L.C.); (G.D.)
| | - Di Wu
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
| | - Guochao Dong
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (L.C.); (G.D.)
| | - Wanchao Chen
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
| | - Henan Zhang
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
| | - Yan Yang
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
- Correspondence: (Y.Y.); (W.W.); Tel.: +86-21-6220-9765 (Y.Y.); +86-21-6190-0388 (W.W.)
| | - Wenhui Wu
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China;
- Correspondence: (Y.Y.); (W.W.); Tel.: +86-21-6220-9765 (Y.Y.); +86-21-6190-0388 (W.W.)
| |
Collapse
|
18
|
Huang L, Shen M, Wu T, Yu Y, Yu Q, Chen Y, Xie J. Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. Int J Biol Macromol 2020; 152:766-774. [PMID: 32119945 DOI: 10.1016/j.ijbiomac.2020.02.318] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
In this study, the immune responses of Mesona chinensis Benth polysaccharides (MP) in vitro and in vivo were investigated. Results showed that MP presented immunomodulatory activities on macrophages and T lymphocytes in vitro. Compared with the cyclophosphamide (Cy)-induced immunosuppressive mice, the body weights, spleen indexes (3.45 to 4.91) and thymus indexes (0.78 to 1.04) of the mice treated with MP were increased, and the peripheral blood levels were recovered. MP treatment also increased superoxide dismutase, glutathione peroxidase and catalase activities, and reduced malondialdehyde levels to enhance the total antioxidant capacity of Cy-treated mice. In addition, MP significantly elevated IL-2, NO, and IFN-γ secretions of splenic lymphocytes and spleen, while MP mainly exerts an immune effect by regulating T lymphocytes. Furthermore, MP possessed the immunomodulatory activity by up-regulating the phosphorylation levels of proteins factors (c-Jun N-terminal kinase, extracellular regulated protein kinase and p38 kinase) in mitogen activated protein kinases signaling pathways. This study suggested that MP may be explored as a natural immune stimulant for functional food and nutraceutical industries.
Collapse
Affiliation(s)
- Lixin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ting Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
19
|
Zhang J, Li W, Yuan Q, Zhou J, Zhang J, Cao Y, Fu G, Hu W. Transcriptome Analyses of the Anti-Proliferative Effects of 20(S)-Ginsenoside Rh2 on HepG2 Cells. Front Pharmacol 2019; 10:1331. [PMID: 31780945 PMCID: PMC6855211 DOI: 10.3389/fphar.2019.01331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
20(S)-ginsenoside Rh2 (Rh2), a well-known protopanaxadiol-type ginsenoside from Panax ginseng has especially gained attention for its anticancer activities on various types of human cancer cells. However, the molecular mechanism through which Rh2 promotes apoptosis in hepatocellular carcinoma (HePG2) cells is not known at the transcriptome level. Rh2 can specifically inhibit the proliferation of HePG2 in a dose- and time-dependent manner. Moreover, Rh2 can significantly increase the apoptosis which was related with an increase in protein expression levels of caspase-3, caspase-6, and poly (ADP-ribose) polymerase. Comparison of RNA-seq transcriptome profiles from control group and Rh2-treated group yielded a list of 2116 genes whose expression was significantly affected, which includes 971 up-regulated genes and 1145 down-regulated genes. The differentially expressed genes in p53 signaling pathway and DNA replication may have closely relationships to the cells apoptosis caused by Rh2 treatment. The results of qPCR validation showed that dynamic changes in mRNA, such as CDKN1A, CCND2, PMAIP1, GTSE1, and TP73.
Collapse
Affiliation(s)
- Ji Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Weibo Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Qiaoyun Yuan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jianmei Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yufeng Cao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Guangbo Fu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
20
|
Hu W, Jiang Y, Xue Q, Sun F, Zhang J, Zhou J, Niu Z, Li Q, Li F, Shen T. Structural characterisation and immunomodulatory activity of a polysaccharide isolated from lotus (Nelumbo nucifera Gaertn.) root residues. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Gong XY, Zhang Y. Protective effect of miR-20a against hypoxia/reoxygenation treatment on cardiomyocytes cell viability and cell apoptosis by targeting TLR4 and inhibiting p38 MAPK/JNK signaling. In Vitro Cell Dev Biol Anim 2019; 55:793-800. [PMID: 31444671 DOI: 10.1007/s11626-019-00399-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are recognized to hold essential parts in the course of pathophysiology participating in myocardial ischemia/reperfusion (I/R) injury. The current study was intended to appraise the functional implication and underlying regulatory mechanism action of miR-20a in myocardial I/R injury. In cardiomyocyte hypoxia/reoxygenation (H/R) model simulating I/R, we observed that miR-20a was diminished in H9c2 cells subjected to H/R. The miR-20a mimics promoted cardiomyocyte viability and reduced H/R-triggered cell apoptosis, while the miR-20a inhibitors induced the inverse response in H9c2 cells subjected to H/R injury. Moreover, we ascertained that TLR4 was one downstream target gene of miR-20a and revealed that miR-20a might hold its protective action on cardiomyocytes subjected to H/R by inactivating p38 MAPK/JNK signaling. In summary, this study highlighted the relieved potential of miR-20a against cardiomyocyte H/R injury and suggested its favorable therapeutic role for myocardial I/R injury.
Collapse
Affiliation(s)
- Xin-Yu Gong
- International Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Yun Zhang
- International Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
22
|
Protective effects of Ulva pertusa polysaccharide and polysaccharide‑iron (III) complex on cyclophosphamide induced immunosuppression in mice. Int J Biol Macromol 2019; 133:911-919. [DOI: 10.1016/j.ijbiomac.2019.04.101] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023]
|
23
|
20-Hydroxy-3-Oxolupan-28-Oic Acid Attenuates Inflammatory Responses by Regulating PI3K⁻Akt and MAPKs Signaling Pathways in LPS-Stimulated RAW264.7 Macrophages. Molecules 2019; 24:molecules24030386. [PMID: 30678231 PMCID: PMC6385096 DOI: 10.3390/molecules24030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
20-Hydroxy-3-oxolupan-28-oic acid (HOA), a lupane-type triterpene, was obtained from the leaves of Mahonia bealei, which is described in the Chinese Pharmacopeia as a remedy for inflammation and related diseases. The anti-inflammatory mechanisms of HOA, however, have not yet been fully elucidated. Therefore, the objective of this study was to characterize the molecular mechanisms of HOA in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. HOA suppressed the release of nitric oxide (NO), pro-inflammatory cytokine tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 macrophages without affecting cell viability. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis indicated that HOA also suppressed the gene expression of inducible NO synthase (iNOS), TNF-α, and IL-6. Further analyses demonstrated that HOA inhibited the phosphorylation of upstream signaling molecules, including p85, PDK1, Akt, IκBα, ERK, and JNK, as well as the nuclear translocation of nuclear factor κB (NF-κB) p65. Interestingly, HOA had no effect on the LPS-induced nuclear translocation of activator protein 1 (AP-1). Taken together, these results suggest that HOA inhibits the production of cytokine by downregulating iNOS, TNF-α, and IL-6 gene expression via the downregulation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs), and the inhibition of NF-κB activation. Our findings indicate that HOA could potentially be used as an anti-inflammatory agent for medical use.
Collapse
|
24
|
Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats. Nitric Oxide 2019; 85:1-9. [PMID: 30659917 DOI: 10.1016/j.niox.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Increasing evidence has demonstrated that dexmedetomidine (DEX) possesses multiple pharmacological actions. Herein, we explored the protective effect and potential molecular mechanism of DEX on lipopolysaccharide (LPS)-induced early acute kidney injury (AKI) from the perspective of antioxidant stress. We found that DEX (30 μg/kg, i.p.) ameliorated the renal dysfunction and histopathological damage (tubular necrosis, vacuolar degeneration, infiltration of inflammatory cells and cast formation) induced by LPS (10 mg/kg). DEX also attenuated renal oxidative stress remarkably in LPS-induced early AKI, as evidenced by reduction in production of reactive nitrogen species, decreasing malondialdehyde levels, as well as increasing superoxide dismutase activity and glutathione content. DEX prevented activator protein-1 translocation, inhibited phosphorylation of I-kappa B (IκB) and activation of nuclear factor kappa B (NF-κB) in LPS-induced early AKI, as assessed by real-time quantitative polymerase chain reaction and protein levels of c-Jun, c-Fos, IκB and NF-κB. Notably, DEX pretreatment had the same effect as intraperitoneal injection of an inhibitor of inducible nitric oxide synthase inhibitor (1400W; 15 mg/kg), and inhibited the activity of renal inducible nitric oxide synthase (iNOS) and decreased the expression of iNOS mRNA and NO production. However, the protective effect of DEX on LPS-induced early AKI was reversed by the alpha 2 adrenal receptor (α2-AR) inhibitor atipamezole, whereas the imidazoline receptor inhibitor idazoxan did not. Taken together, DEX protects against LPS-induced early AKI in rats by inhibiting the iNOS/NO signaling pathway, mainly by acting on α2-ARs instead of IRs.
Collapse
|