1
|
Héjja M, Mihok E, Alaya A, Jolji M, György É, Meszaros N, Turcus V, Oláh NK, Máthé E. Specific Antimicrobial Activities Revealed by Comparative Evaluation of Selected Gemmotherapy Extracts. Antibiotics (Basel) 2024; 13:181. [PMID: 38391567 PMCID: PMC10885950 DOI: 10.3390/antibiotics13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Nowadays, unprecedented health challenges are urging novel solutions to address antimicrobial resistance as multidrug-resistant strains of bacteria, yeasts and moulds are emerging. Such microorganisms can cause food and feed spoilage, food poisoning and even more severe diseases, resulting in human death. In order to overcome this phenomenon, it is essential to identify novel antimicrobials that are naturally occurring, biologically effective and increasingly safe for human use. The development of gemmotherapy extracts (GTEs) using plant parts such as buds and young shoots has emerged as a novel approach to treat/prevent human conditions due to their associated antidiabetic, anti-inflammatory and/or antimicrobial properties that all require careful evaluations. Seven GTEs obtained from plant species like the olive (Olea europaea L.), almond (Prunus amygdalus L.), black mulberry (Morus nigra L.), walnut (Juglans regia L.), blackberry (Rubus fruticosus L.), blackcurrant (Ribes nigrum L.) and bilberry (Vaccinium myrtillus L.) were tested for their antimicrobial efficiency via agar diffusion and microbroth dilution methods. The antimicrobial activity was assessed for eight bacterial (Bacillus cereus, Staphylococcus aureus, Salmonella enterica subsp. enterica, Proteus vulgaris, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Listeria monocytogenes), five moulds (Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, Penicillium citrinum, Penicillium expansum) and one yeast strain (Saccharomyces cerevisiae). The agar diffusion method revealed the blackberry GTE as the most effective since it inhibited the growth of three bacterial, four moulds and one yeast species, having considered the total number of affected microorganism species. Next to the blackberry, the olive GTE appeared to be the second most efficient, suppressing five bacterial strains but no moulds or yeasts. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for each GTE and the microorganisms tested. Noticeably, the olive GTE appeared to feature the strongest bacteriostatic and bactericidal outcome, displaying specificity for S. aureus, E. faecalis and L. monocytogenes. The other GTEs, such as blueberry, walnut, black mulberry and almond (the list indicates relative strength), were more effective at suppressing microbial growth than inducing microbial death. However, some species specificities were also evident, while the blackcurrant GTE had no significant antimicrobial activity. Having seen the antimicrobial properties of the analysed GTEs, especially the olive and black mulberry GTEs, these could be envisioned as potential antimicrobials that might enhance antibiotic therapies efficiency, while the blackberry GTE would act as an antifungal agent. Some of the GTE mixtures analysed have shown interesting antimicrobial synergies, and all the antimicrobial effects observed argue for extending these studies to include pathological microorganisms.
Collapse
Affiliation(s)
- Melinda Héjja
- Doctoral School of Nutrition and Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
| | - Emőke Mihok
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
| | - Amina Alaya
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
| | - Maria Jolji
- Doctoral School of Nutrition and Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
| | - Éva György
- Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Libertății sq. 1., 530104 Miercurea Ciuc, Romania
| | - Noemi Meszaros
- Department of life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, L. Rebreanu Str. 86, 310414 Arad, Romania
| | - Violeta Turcus
- Department of life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, L. Rebreanu Str. 86, 310414 Arad, Romania
- CE-MONT Mountain Economy Center, Costin C. Kirițescu National Institute of Economic Research, Romanian Academy, Petreni Str. 49, 725700 Suceava, Romania
| | - Neli Kinga Oláh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Vasile Goldis, Western University of Arad, L. Rebreanu Str. 86, 310414 Arad, Romania
- PlantExtrakt Ltd., No. 46, 407059 Cluj, Romania
| | - Endre Máthé
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary
- Department of life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, L. Rebreanu Str. 86, 310414 Arad, Romania
| |
Collapse
|
2
|
Sun Q, Wang N, Xu W, Zhou H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114166. [PMID: 33940086 DOI: 10.1016/j.jep.2021.114166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Ribes Linn., which belongs to the Grossulariaceae family, contains 160 species distributed mainly in temperate and cold regions of the Northern Hemisphere. There are 59 species in southwest, northwest and northeast China. Some species of Ribes have been used as traditional and local medicines for the treatment of glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. However, the data provided in recent years have not been collated and compared. AIM OF THE STUDY This review aims to summarize the current status of ethnopharmacological uses, phytochemistry, pharmacology, clinical applications, and pharmacokinetics of the genus Ribes to better understand the therapeutic potential of the genus Ribes in the future and hope to provide a relatively novel perspective for further clinical application on the genus. MATERIALS AND METHODS The literature on Ribes was collected through a series of scientific search engines including Elsevier, ACS, Springer, Web of Science, PubMed, Google Scholar, Baidu Scholar, Wiley, China National Knowledge Infrastructure (CNKI) and books. RESULTS Ribes species have been used for detoxification, glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. These plants mainly contain phenolic glycosides, flavonoids, proanthocyanidins, polysaccharides, etc. Most traditional uses are related to biological activity and have been confirmed by modern research. Pharmacological studies in vitro and in vivo revealed that the extracts and pure compounds possessed significant hypolipidemic, antioxidant, anti-inflammatory, antitumor, antibacterial, and antiviral activity, eyesight protection and other effects. CONCLUSIONS The traditional uses, phytochemistry, pharmacology, pharmacokinetics, and clinical applications described in this article explained that the Ribes species has numerous activities, and these findings will promote further action in the area of mechanism research. However, very few preclinical and clinical studies have focused on the toxicology and pharmacokinetics of crude extracts and pure compounds from the genus Ribes. Moreover, several clinical evidence to support the health benefits of Ribes plants. The development of new medicines based on Ribes species as ingredients may be restricted. The pharmacological activity, clinical efficacy and safety of Ribes species need to be verified by systematic and comprehensive preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Qing Sun
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhua Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Xining, Qinghai, 810008, China
| |
Collapse
|
3
|
Meleshko T, Rukavchuk R, Buhyna L, Pallah O, Sukharev S, Drobnych V, Boyko N. Biologically Active Substance Content in Edible Plants of Zakarpattia and Their Elemental Composition Model. Biol Trace Elem Res 2021; 199:2387-2398. [PMID: 32815090 DOI: 10.1007/s12011-020-02345-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Consumption of edible plants satisfies a significant part of human body needs in macro- and micronutrients while biologically active substances contain strong antioxidant properties and reduce the risk of a number of diseases. Balanced nutrition and design of personalized diets and treatment rely on the data on the content of macro- and micronutrients and biologically active substances. We determined polyphenol and anthocyanin content in 22 species of local edible plants using modified spectrophotometric method with Folin-Ciocalteu reagent as well as chemical elements' content in a mixture of edible plants from 13 regions using standard procedures. We performed correlational analysis of the obtained data and analysis of the main components in OriginLab, developed regional models of chemical elements' content for a mixture of edible plants, and conducted cluster analysis using common tools in Python. The results of biologically active substances' study demonstrated that the highest content of polyphenolic compounds and anthocyanins was found in grape meal of Vitis vinifera L. The study of chemical elements' content demonstrated that edible plants from lowland areas are the best and revealed clear dependences of the elements on each other and geographical conditions. The analysis of the principal components confirmed this finding. Based on the obtained data, a number of regional models of chemical elements' content in a mixture of edible plants were built, tested, and evaluated. Obtained results are the basis for designing various diets, filling composite databases of the region's food, and creating the newest biologics-pharmabiotics.
Collapse
Affiliation(s)
- Tamara Meleshko
- Department of Clinical Laboratory Diagnostics and Pharmacology, Faculty of Dentistry, Uzhhorod National University, Universytetska st. 16a, Uzhhorod, 88000, Ukraine
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| | - Roman Rukavchuk
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine.
| | - Larysa Buhyna
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| | - Oleksandra Pallah
- Department of Clinical Laboratory Diagnostics and Pharmacology, Faculty of Dentistry, Uzhhorod National University, Universytetska st. 16a, Uzhhorod, 88000, Ukraine
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| | - Sergii Sukharev
- Department of Ecology and Environmental Protection, Faculty of Chemistry, Uzhhorod National University, Pidgirna st. 46, Uzhhorod, 88000, Ukraine
| | - Volodymyr Drobnych
- Department of Land Management and Cadaster, Uzhhorod National University, Universytetska st. 14, Uzhhorod, 88000, Ukraine
| | - Nadiya Boyko
- Department of Clinical Laboratory Diagnostics and Pharmacology, Faculty of Dentistry, Uzhhorod National University, Universytetska st. 16a, Uzhhorod, 88000, Ukraine
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| |
Collapse
|
4
|
Sun Q, Wang N, Xu W, Zhou H. Ribes himalense as potential source of natural bioactive compounds: Nutritional, phytochemical, and antioxidant properties. Food Sci Nutr 2021; 9:2968-2984. [PMID: 34136164 PMCID: PMC8194758 DOI: 10.1002/fsn3.2256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/03/2021] [Accepted: 03/14/2021] [Indexed: 11/18/2022] Open
Abstract
Ribes himalense Royle ex Decne. (family Saxifraaceae, subfamily Grossulariaceae, genus Ribes) is a wild berry fruit with illustrated health-promoting features, which widely distributed in Northwest China are deficiently exploited. This study aimed to assess the potential of a Ribes himalense as a source of natural bioactive compounds through characterizing its nutraceutical characteristics, phytochemicals properties, and antioxidant ability. Fresh berries were quantitatively analyzed for proximate composition, minerals, vitamins, amino acids, total polyphenols, total flavonoids, anthocyanins, procyanidin, and polysaccharides contents through China National Food Safety Standard; the characterization and identification of extracts of wild berries obtained with ethanol 30%, ethanol 50%, and ethanol 95% were firstly performed by UPLC-Triple-TOF-MS2. Furthermore, antioxidant activity of the ethanol extract was evaluated via different assay methods such as DPPH, ABTS, and FRAP. The results indicated that the most important bioactive composition was procyanidin (0.72%), polyphenols (0.49%), total flavonoids (0.38%), vitamin C (64.6 mg/100g FW), and K (218.44 mg/100 g FW), and a total of 95 compounds were detected with polyphenols, flavonoids, and proanthocyanidins as the dominant, and also ethanol extract possessed stronger antioxidant activity. These results suggested that Ribes himalense fruit has great potential in protecting human health, with the focus on the development of functional products.
Collapse
Affiliation(s)
- Qing Sun
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Na Wang
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Xu
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Huakun Zhou
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Key laboratory of Restoration Ecology of Cold Area in Qinghai ProvinceXiningChina
| |
Collapse
|
5
|
Magnavacca A, Piazza S, Cammisa A, Fumagalli M, Martinelli G, Giavarini F, Sangiovanni E, Dell’Agli M. Ribes nigrum Leaf Extract Preferentially Inhibits IFN-γ-Mediated Inflammation in HaCaT Keratinocytes. Molecules 2021; 26:molecules26103044. [PMID: 34065200 PMCID: PMC8160861 DOI: 10.3390/molecules26103044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Ribes nigrum L. (blackcurrant) leaf extracts, due to high levels of flavonols and anthocyanins, have been shown to exhibit beneficial effects in inflammatory diseases. However, whereas their traditional use has been investigated and validated in several models of inflammation and oxidative stress, the possible impact on skin disorders is still largely unknown. The purpose of this work was to elucidate the effects of R. nigrum leaf extract (RNLE) on keratinocyte-derived inflammatory mediators, elicited by a Th1 or Th2 cytokine milieu. HaCaT cells were challenged with TNF-α, either alone or in combination with the costimulatory cytokines IFN-γ or IL-4, and the release of proinflammatory cytokines and mediators (IL-8, IL-6, s-ICAM-1, and TSLP) was evaluated. The results showed that RNLE preferentially interferes with IFN-γ signaling, demonstrating only negligible activity on TNF-α or IL-4. This effect was attributed to flavonols, which might also account for the ability of RNLE to impair TNF-α/IL-4-induced TSLP release in a cAMP-independent manner. These results suggest that RNLE could have an antiallergic effect mediated in keratinocytes via mechanisms beyond histamine involvement. In conclusion, the discovery of RNLE preferential activity against IFN-γ-mediated inflammation suggests potential selectivity against Th1 type response and the possible use in Th1 inflammatory diseases.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Molecular Sciences, University of Milan, 20133 Milan, Italy; (A.M.); (S.P.); (M.F.); (G.M.); (F.G.); (M.D.)
| | - Stefano Piazza
- Department of Pharmacological and Molecular Sciences, University of Milan, 20133 Milan, Italy; (A.M.); (S.P.); (M.F.); (G.M.); (F.G.); (M.D.)
| | - Anna Cammisa
- Specialist in Dermatology and Venereology, Corso di Porta Romana 131, 20122 Milan, Italy;
| | - Marco Fumagalli
- Department of Pharmacological and Molecular Sciences, University of Milan, 20133 Milan, Italy; (A.M.); (S.P.); (M.F.); (G.M.); (F.G.); (M.D.)
| | - Giulia Martinelli
- Department of Pharmacological and Molecular Sciences, University of Milan, 20133 Milan, Italy; (A.M.); (S.P.); (M.F.); (G.M.); (F.G.); (M.D.)
| | - Flavio Giavarini
- Department of Pharmacological and Molecular Sciences, University of Milan, 20133 Milan, Italy; (A.M.); (S.P.); (M.F.); (G.M.); (F.G.); (M.D.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Molecular Sciences, University of Milan, 20133 Milan, Italy; (A.M.); (S.P.); (M.F.); (G.M.); (F.G.); (M.D.)
- Correspondence:
| | - Mario Dell’Agli
- Department of Pharmacological and Molecular Sciences, University of Milan, 20133 Milan, Italy; (A.M.); (S.P.); (M.F.); (G.M.); (F.G.); (M.D.)
| |
Collapse
|
6
|
Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci Rep 2021; 11:3240. [PMID: 33547351 PMCID: PMC7864976 DOI: 10.1038/s41598-021-82207-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vaccinum myrtillus L., Ribes nigrum L., Rubus fruticosus L., Fragaria vesca L. leaves are considered an agro-waste of the berry industry. Although numerous studies indicate fruit is a rich source of bioactive compounds, the authors prove leaves can also be a valuable source of compounds used in the pharmaceutical and cosmetic industries. The study attempts to assess and compare the antioxidant and cytotoxic properties of berry leaves extracts. The total phenolic compounds, flavonoids, anthocyanins and procyanidins content were determined. Antioxidant potential was evaluated using the DPPH radical scavenging method. Cytotoxicity studies were conducted to evaluate the effect of the extracts on the metabolism and proliferation of keratinocytes and fibroblasts in vitro. The effect on the migration capacity of these cells was also assessed. The obtained results show that the examined extracts are a source of valuable bioactive agents. All tested extracts show significant ability to remove free radicals in higher concentrations. Cytotoxicity assessments have shown that leaf extracts of the analyzed plants differ in cytotoxicity, both for keratinocytes and fibroblasts. The results of the assessment of cell migration capacity correlate with cytotoxicity tests, because the concentration of extracts showing cytotoxic activity towards the tested cells also inhibited their migration.
Collapse
|
7
|
Zhao Y, Lu H, Wang Q, Liu H, Shen H, Xu W, Ge J, He D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J Sep Sci 2021; 44:1404-1420. [PMID: 33464708 DOI: 10.1002/jssc.202000962] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 01/16/2021] [Indexed: 12/11/2022]
Abstract
Ribes meyeri leaves are used as traditional Kazakh medicine in China. However, no study on the characterization of the phenolic compounds in R. meyeri leaves has been reported, resulting in the lack of quality control measures and poor standardization. This study was conducted to identify the phenolic compounds in R. meyeri leaves and evaluate their antioxidant and antidiabetic activities. A total of 77 phenolics were tentatively identified by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry was applied to simultaneously quantify 12 phenolics in R. meyeri leaves. Rutin, epigallocatechin, isoquercitrin, epicatechin, protocatechuic acid, and kaempferol-3-O-rutinoside were abundant in the R. meyeri leaves. The methanol extract and four different extracts enhanced the glucose uptake in 3T3-L1 adipocytes. The ethyl acetate extracts showed a total phenolic content of 966.89 ± 3.59 mg gallic acid equivalents/g, a total flavonoid content of 263.58 ± 17.09 mg catechin equivalents/g, and good protein-tyrosine phosphatase-1B inhibitory activities (IC50 : 0.60 ± 0.03 μg/mL). To our knowledge, this work is the first to identify and quantify the major phenolics in R. meyeri leaves.
Collapse
Affiliation(s)
- Yayun Zhao
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Honglin Lu
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Qiang Wang
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Hailiang Liu
- School of Medicine, Tongji University, Shanghai, P. R. China
| | - Haitao Shen
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Wenbin Xu
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Juan Ge
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Dajun He
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| |
Collapse
|
8
|
Karakaya S, Süntar I, Yakinci OF, Sytar O, Ceribasi S, Dursunoglu B, Ozbek H, Guvenalp Z. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113207. [PMID: 32730870 DOI: 10.1016/j.jep.2020.113207] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilobium species are generally known as "Yakı Otu" in Turkey, which mens "plaster herb" in English. Young shoots of Epilobium angustifolium L., Epilobium stevenii Boiss., and Epilobium hirsutum L. are consumed as salad or meal. These species have been used as a poultice for the treatment of mouth wounds in traditional medicine. An ointment prepared from leaves is used for skin disorders in children. AIM OF THE STUDY We aimed to evaluate the ethnopharmacological use of Epilobium angustifolium, E. stevenii, and E. hirsutum by using in vivo and in vitro experimental models, and to identify the active wound-healer compound(s) and to explain the probable mechanism of the wound-healing activity. MATERIALS AND METHODS Evaluation of wound healing effects of plant extracts was performed in rats and mice by linear incision and circular excision wound models. Determination of total phenolic constituents and antioxidant capacities, which are known to promote the wound healing process, were carried out through Folin-Ciocalteau method and 2,2 Diphenyl 1 picrylhydrazyl (DPPH) scavenging assay as well as determination of total antioxidant status (TAS) and total oxidant status (TOS) on the treated tissues. The active ethyl acetate (EtOAc) sub-extract of E. angustifolium was fractionated by different chromatographic separation techniques. The structures of isolated compounds were elucidated via detailed analyzes (NMR and LC/MS). In addition, in vitro collagenase, hyaluronidase, and elastase enzymes inhibitory activity tests were performed on the isolated compounds to discover the activation pathways of the samples. RESULTS Among the methanol (MeOH) extracts, E. angustifolium had the highest wound healing activity. Among the sub-extracts, EtOAc showed the highest wound healing activity. Thus, EtOAc sub-extract was subjected to chromatography to isolate the active compounds. Five known flavonoids namely hyperoside (quercetin-3-O-β-D-galactoside) (1), kaempferol (2), kaempferol-3-O-α-L-rhamno pyranoside (3), quercetin-3-O-α-L-rhamno pyranoside (4), and quercetin-3-O-α-L-arabino pyranoside (5) were isolated from the EtOAc sub-extract of E. angustifolium. In vitro tests showed that hyperoside could be the compound responsible for the wound-healing activity by its significant anti-hyaluronidase, anti-collagenase, and antioxidant activities. CONCLUSION The EtOAc sub-extract of the aerial part of Epilobium angustifolium displayed remarkable wound-healing activity with anti-hyaluronidase, anti-collagenase, and antioxidant activities. Hyperoside was detected as the primary active compound of the aerial parts. According to the results, we suggest that EtOAc sub-extract of E. angustifolium and hyperoside may be a potent nominee to be used for the improvement of a wound-healing agent.
Collapse
Affiliation(s)
- Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Omer Faruk Yakinci
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey; National Poison Information Service, Ministry of Health, Ankara, Turkey
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Kiev National University of Taras Shevchenko, Kyiv, Ukraine; Department of Plant Physiology, Slovak University of Agriculture in Nitra, Slovakia
| | - Songul Ceribasi
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Benan Dursunoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Hilal Ozbek
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Zuhal Guvenalp
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| |
Collapse
|
9
|
A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants (Basel) 2020; 9:antiox9060542. [PMID: 32575730 PMCID: PMC7346205 DOI: 10.3390/antiox9060542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
During the last 30 years, berries have gained great attention as functional food against several risk factors in chronic diseases. The number of related publications on Pubmed rose from 1000 items in 1990 to more than 11,000 in 2019. Despite the fact that a common and clear definition of "berries" is not shared among different scientific areas, the phytochemical pattern of these fruits is mainly characterized by anthocyanins, flavanols, flavonols, and tannins, which showed antioxidant and anti-inflammatory properties in humans. Skin insults, like wounds, UV rays, and excessive inflammatory responses, may lead to chronic dermatological disorders, conditions often characterized by long-term treatments. The application of berries for skin protection is sustained by long traditional use, but many observations still require a clear pharmacological validation. This review summarizes the scientific evidence, published on EMBASE, MEDLINE, and Scholar, to identify extraction methods, way of administration, dose, and mechanism of action of berries for potential dermatological treatments. Promising in vitro and in vivo evidence of Punica granatum L. and Vitis vinifera L. supports wound healing and photoprotection, while Schisandra chinensis (Turcz.) Baill. and Vaccinium spp. showed clear immunomodulatory effects. Oral or topical administrations of these berries justify the evaluation of new translational studies to validate their efficacy in humans.
Collapse
|
10
|
Süntar I, Cevik CK, Çeribaşı AO, Gökbulut A. Healing effects of Cornus mas L. in experimentally induced ulcerative colitis in rats: From ethnobotany to pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112322. [PMID: 31644942 DOI: 10.1016/j.jep.2019.112322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ethnobotanical studies conducted in Turkey and other countries have revealed that Cornus mas L., from the family Cornaceae have been used against stomachache, diarrhea and colitis. AIM OF THE STUDY The objective the present study is to determine the possible activity of C. mas in experimentally induced ulcerative colitis in rats and to identify its phytochemical feature. MATERIALS AND METHODS 2,4,6-Trinitrobenzene sulfonic acid-induced colitis model was induced in rats. The rats were orally treated with different doses (50, 100, 200 and 400 mg/kg) of C. mas 80% methanol extract for 14 days. Increase in body weight, consumed amount of feed, form of the stool, presence of rectal prolapse were followed every day. At the end of the experiment, colon tissues were removed and wet weights for each animal were measured and colon damages were scored. Total antioxidant and total oxidant status, cytokine (TNF-α and IL-1β) and protein levels of colon tissues were evaluated and histopathological analyses were carried out. After the detection of the effective dose as 400 mg/kg, the aqueous methanol extract was fractionated by using liquid-liquid fractionation technique and the sub-extracts were also tested for in vivo biological activities. High Performance Liquid Chromatography analyses were conducted to determine the phytochemical profile of the active crude extract and n-butanol sub-extract. RESULTS Amount of feed consumed per day and increase in body weight were the lowest in the control group, while those values were determined to be the highest in 80% methanol extract (at 400 mg/kg dose), n-butanol sub-extract and reference groups. Following colitis induction, it was determined that the fecal form was yellow-slippery in all groups and returned to normal after the treatment with C. mas extracts. Rectal prolapse score was less in the extract (400 mg/kg) and n-butanol sub-extract treated groups. Total antioxidant, total oxidant status, cytokine and protein levels were found to be in parallel with macroscopic findings. 80% methanol extract (400 mg/kg) and n-butanol sub-extract provided the best healing according to the wet weight measurements and colon damage scoring performed on the removed colon tissues. These findings supported the results of histopathological analysis. According to the chromatographic analysis, ellagic acid was determined in both extracts and its amount was quantified. CONCLUSIONS The present study has verified the ethnomedical use of C. mas for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara, Turkey.
| | - Can Kerem Cevik
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara, Turkey
| | - Ali Osman Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23119, Elazig, Turkey
| | - Alper Gökbulut
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara, Turkey
| |
Collapse
|