1
|
Huang Y, Liu E, Huang X, Hao J, Hu S, Gao X. Pharmacokinetic study about compatibility of Eucommia ulmoides and Psoralea corylifolia. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
2
|
The Metabolites and Mechanism Analysis of Genistin against Hyperlipidemia via the UHPLC-Q-Exactive Orbitrap Mass Spectrometer and Metabolomics. Molecules 2023; 28:molecules28052242. [PMID: 36903488 PMCID: PMC10005657 DOI: 10.3390/molecules28052242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Genistin, an isoflavone, has been reported to have multiple activities. However, its improvement of hyperlipidemia is still unclear, and the same is true with regard to its mechanism. In this study, a high-fat diet (HFD) was used to induce a hyperlipidemic rat model. The metabolites of genistin in normal and hyperlipidemic rats were first identified to cause metabolic differences with Ultra-High-Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS). The relevant factors were determined via ELISA, and the pathological changes of liver tissue were examined via H&E staining and Oil red O staining, which evaluated the functions of genistin. The related mechanism was elucidated through metabolomics and Spearman correlation analysis. The results showed that 13 metabolites of genistin were identified in plasma from normal and hyperlipidemic rats. Of those metabolites, seven were found in normal rat, and three existed in two models, with those metabolites being involved in the reactions of decarbonylation, arabinosylation, hydroxylation, and methylation. Three metabolites, including the product of dehydroxymethylation, decarbonylation, and carbonyl hydrogenation, were identified in hyperlipidemic rats for the first time. Accordingly, the pharmacodynamic results first revealed that genistin could significantly reduce the level of lipid factors (p < 0.05), inhibited lipid accumulation in the liver, and reversed the liver function abnormalities caused by lipid peroxidation. For metabolomics results, HFD could significantly alter the levels of 15 endogenous metabolites, and genistin could reverse them. Creatine might be a beneficial biomarker for the activity of genistin against hyperlipidemia, as revealed via multivariate correlation analysis. These results, which have not been reported in the previous literature, may provide the foundation for genistin as a new lipid-lowering agent.
Collapse
|
3
|
Identification of possible bioactive compounds and a comparative study on in vitro biological properties of whole hemp seed and stem. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Intestinal Glucuronidation, Prior to Hepatic Glucuronidation, Plays an Important Role in the Low Circulating Levels of Calycosin. SEPARATIONS 2022. [DOI: 10.3390/separations9050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Calycosin is a dietary flavonoid with favorable activities, which seems to be inconsistent with its low circulating levels in vivo. To address this issue, we developed a strategy to understand calycosin distribution by integrating qualitative and quantitative analyses of calycosin and its metabolites in portal vein plasma, the liver, and systemic plasma after oral administration to rats. Consequently, 21 metabolites were characterized in total, including the first report of a reductive biotransformation and 14 new metabolites. Compared with the low levels of calycosin, calycosin glucuronides were predominant in circulation, and both the hepatic and intestinal regions contributed to the high exposure of these calycosin glucuronides. However, intestinal glucuronidation, prior to hepatic glucuronidation, plays a key role in the low circulating levels of calycosin.
Collapse
|
5
|
Wang Z, Liu H, Cao Y, Zhang T, Guo H, Wang B. A novel method for investigating the mechanism of anti-rheumatoid arthritis activity of Angelicae pubescentis Radix by integrating UHPLC-QTOF/MS and network pharmacology. Biomed Chromatogr 2022; 36:e5389. [PMID: 35484722 DOI: 10.1002/bmc.5389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
The study aimed to establish a strategy to elucidate the in vivo constituents of Angelicae pubescentis Radix (APR, also known as Duhuo) and reveal the probable mechanisms underlying the anti-rheumatoid arthritis activity of APR. APR, first recorded in Shennong Bencao Jing, is mainly used to treat Bi syndrome. Eleven absorbed components of APR were successfully identified using the Rheumatoid arthritis (RA) rat model and the UHPLC-QTOF/MS technique. Two active ingredients (osthole, and columbianadin) and five corresponding targets (PTGS1, PTGS2, RXRA, CCNA2 and ACHE) were found to construct a compound-protein interaction network in RA. In addition, a non-alcoholic fatty liver disease (NAFLD) pathway, which was related to anti-RA activity, was eventually identified by KEGG analysis. Subsequently, molecular docking was performed by establishing a mixed matrix network including the absorbed component, corresponding target, and signaling pathway with two key compounds (osthole and columbianadin) and two important targets (PTGS2 and PTGS1). The result of molecular docking is in agreement with the network pharmacology (NP).
Collapse
Affiliation(s)
- Zhen Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Hui Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Yunxiang Cao
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
| | - Tiantian Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Hongyan Guo
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Bin Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| |
Collapse
|
6
|
Wang Y, Li Y, Zhang H, Zhu L, Zhong J, Zeng J, Meng C, Wu J, Wang T, Shi R, Yuan W, Jiang J, Liu P, Ma Y. Pharmacokinetics-based comprehensive strategy to identify multiple effective components in Huangqi decoction against liver fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153513. [PMID: 33647776 DOI: 10.1016/j.phymed.2021.153513] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Huangqi decoction (HQD) has been used to treat chronic liver diseases since the 11th century, but the effective components in HQD against liver fibrosis have not been definitively clarified. PURPOSE To investigate and identify multiple effective components in HQD against liver fibrosis using a pharmacokinetics-based comprehensive strategy. METHODS The absorbed representative components in HQD and their metabolites were detected in human plasma and urine using high-resolution mass spectrometry combined with a database-directed method, and then pharmacokinetics in multiple HQD components in human plasma was analyzed by ultra-performance liquid chromatography coupled with triple-quadruple mass spectrometry. Furthermore, the anti-fibrotic effect of potential effective HQD components was studied in LX-2 cells and that of a multi-component combination of HQD (MCHD) was verified in a mouse CCl4-induced hepatic fibrosis model. RESULTS Twenty-four prototype components in HQD and 17 metabolites were identified in humans, and the pharmacokinetic characteristics of 14 components were elucidated. Among these components, astragaloside IV, cycloastragenol, glycyrrhizic acid, glycyrrhetinic acid, liquiritigenin, and isoliquiritigenin downregulated the mRNA expression of α-SMA; cycloastragenol, calycosin-7-O-β-D-glucoside, formononetin, glycyrrhetinic acid, liquiritin, and isoliquiritin downregulated the mRNA expression of Col I; and calycosin, liquiritigenin, isoliquiritigenin, cycloastragenol, and glycyrrhetinic accelerated the apoptosis of LX-2 cells. MCHD reduced serum aminotransferase activity and hepatic collagen fibril deposition in mice with CCl4-induced hepatic fibrosis. CONCLUSION Using the pharmacokinetics-based comprehensive strategy, we revealed that multiple effective HQD components act together against liver fibrosis.
Collapse
Affiliation(s)
- Yahang Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201204, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leilei Zhu
- GCP center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Zhong
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiakai Zeng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cong Meng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weian Yuan
- GCP center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Jiang
- GCP center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201204, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Drzewiecka M, Beszterda M, Frańska M, Frański R. 2,2-Bis(4-Hydroxyphenyl)-1-Propanol-A Persistent Product of Bisphenol A Bio-Oxidation in Fortified Environmental Water, as Identified by HPLC/UV/ESI-MS. TOXICS 2021; 9:toxics9030049. [PMID: 33807837 PMCID: PMC7998907 DOI: 10.3390/toxics9030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Biodegradation of bisphenol A in the environmental waters (lake, river, and sea) has been studied on the base of fortification of the samples taken and the biodegradation products have been analyzed using HPLC/UV/ESI-MS. Analysis of the characteristic fragmentation patterns of [M-H]- ions permitted unambiguous identification of the biodegradation products as 2,2-bis(4-hydroxyphenyl)-1-propanol or as p-hydroxyacetophenone, depending on the type of surface water source. The formation of 2,2-bis(4-hydroxyphenyl)-1-propanol was much more common than that of p-hydroxyacetophenone. Moreover, 2,2-Bis(4-hydroxyphenyl)-1-propanol has not been further biodegraded, in contrast to the p-hydroxyacetophenone, which was further mineralized. It has been proved, for the first time, that 2,2-bis(4-hydroxyphenyl)-1-propanol can be regarded as persistent product of bisphenol A biodegradation in the fortified environmental waters.
Collapse
Affiliation(s)
- Małgorzata Drzewiecka
- Faculty of Chemistry Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Monika Beszterda
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Mazowiecka 48, 60-623 Poznań, Poland;
| | - Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Rafał Frański
- Faculty of Chemistry Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Correspondence:
| |
Collapse
|
8
|
Zhang L, Yuan JQ, Song FC, Zhu MD, Li Q, Liu SH, Zhao K, Zhao C. Ameliorative effects of the traditional Chinese medicine formula Qing-Mai-Yin on arteriosclerosis obliterans in a rabbit model. PHARMACEUTICAL BIOLOGY 2020; 58:785-795. [PMID: 33073642 PMCID: PMC7592894 DOI: 10.1080/13880209.2020.1803368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Qing-Mai-Yin (QMY) is a clinically used herbal formula for treating arteriosclerosis obliterans (ASO). OBJECTIVE To evaluate the chemical constituents and effects of QMY on ASO rabbit model. MATERIALS AND METHODS Forty-eight New Zealand rabbits were divided into six groups (n = 8): normal (normal rabbits treated with 0.5% CMC-Na), vehicle (ASO rabbits treated with 0.5% CMC-Na), positive (simvastatin, 1.53 mg/kg), and QMY treatment (300, 600, and 1200 mg/kg). ASO rabbit model was prepared by high fatty feeding, roundly shortening artery, and bovine serum albumin immune injury. QMY (300, 600 and 1200 mg/kg) was orally administered for 8 weeks. The effects and possible mechanisms of QMY on ASO rabbits were evaluated by pathological examination, biochemical assays, and immunohistochemical assays. The compositions of QMY were analysed using HPLC-Q-TOF-MS/MS analysis. RESULTS Compared to the vehicle rabbit, QMY treatment suppressed plaque formation and intima thickness in aorta, and decreased intima thickness, whereas increased lumen area of femoral artery. Additionally, QMY treatment decreased TC, TG and LDL, decreased CRP and ET, and increased NO and 6-K-PGF1α in serum. Furthermore, the potential mechanisms studied revealed that QMY treatment could suppress expression of TNF-α, IL-6, ICAM-1 and NF-κB in endothelial tissues, and increase IκB. In addition, HPLC analysis showed QMY had abundant anthraquinones, stilbenes, and flavonoids. CONCLUSION QMY has ameliorative effects on ASO rabbit, and the potential mechanisms are correlated to reducing inflammation and down-regulating NF-κB. Our study provides a scientific basis for the future application and investigation of QMY.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jia-Qin Yuan
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fu-Chen Song
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Mei-Dong Zhu
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qi Li
- Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Sheng-Hua Liu
- Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kai Zhao
- Department of Traditional of Chinese Medicine, General Hospital of Ningxia Medical University, Yinchuan, PR China
- CONTACT Kai Zhao Department of Traditional of Chinese Medicine, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, Ningxia750004, PR China
| | - Cheng Zhao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Cheng Zhao Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai200437, PR China
| |
Collapse
|
9
|
Liu H, Sun Z, Tian X, Feng Q, Guo Z, Chen S, Yin H, Wang Y, Xu Z, Xie L, Hu P, Huang C. Systematic investigation on the chemical basis of anti-NAFLD Qushi Huayu Fang. Part 1: A study of metabolic profiles in vivo and in vitro by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2020; 34:e4805. [PMID: 32012315 DOI: 10.1002/bmc.4805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Qushi Huayu Fang (QHF) is a clinic-empirical prescription for treating non-alcoholic fatty liver disease (NAFLD) in China, which is composed of five herbs. However, the bioactive constituents responsible for the efficacy of QHF remain unclear. Thus, a high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method was established and adopted to identify the constituents of QHF, and profile its metabolism in vivo and in vitro. Among the 66 constituents in QHF, only 14 compounds of six structural types were absorbed, and 34 metabolites were generated through eight metabolic pathways. A total of 20 metabolites were first reported, including four organic acids, one iridoid, two flavones, five naphthols, three anthraquinones, and five stilbenes. Glucuronidation and sulfation were the main metabolic pathways, and the intestinal metabolism played an important role in the biotransformation of QHF. Many compounds, especially those detected in the liver, the target organ of QHF, were reported to display the anti-NAFLD activity. This is the first study to explore the constituents of QHF and its metabolism in vivo and in vitro, thus realizing the first step to clarify the chemical basis of QHF qualitatively, and laying the foundation for further research on the anti-NAFLD mechanism of QHF.
Collapse
Affiliation(s)
- Huan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziqiong Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuoji Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Like Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|