1
|
Hasan‐Abad A, Atapour A, Sobhani‐Nasab A, Motedayyen H, ArefNezhad R. Plant-Based Anticancer Compounds With a Focus on Breast Cancer. Cancer Rep (Hoboken) 2024; 7:e70012. [PMID: 39453820 PMCID: PMC11506041 DOI: 10.1002/cnr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 10/27/2024] Open
Abstract
Breast cancer is a common form of cancer among women characterized by the growth of malignant cells in the breast tissue. The most common treatments for this condition include chemotherapy, surgical intervention, radiation therapy, hormone therapy, and biological therapy. The primary issues associated with chemotherapy and radiation therapy are their adverse events and significant financial burden among patients in underdeveloped countries. This highlights the need to explore and develop superior therapeutic options that are less detrimental and more economically efficient. Plants provide an abundant supply of innovative compounds and present a promising new avenue for investigating cancer. Plants and their derivations are undergoing a revolution due to their reduced toxicity, expediency, cost-effectiveness, safety, and simplicity in comparison to conventional treatment methods. Natural products are considered promising candidates for the development of anticancer drugs, due perhaps to the diverse pleiotropic effects on target events. The effects of plant-derived products are limited to cancer cells while leaving healthy cells unaffected. Identification of compounds with strong anticancer properties and development of plant-based medications for cancer treatment might be crucial steps in breast cancer therapy. Although bioactive compounds have potent anticancer properties, they also have drawbacks that need to be resolved before their application in clinical trials and improved for the approved drugs. This study aims to give comprehensive information on known anticancer compounds, including their sources and molecular mechanisms of actions, along with opportunities and challenges in plant-based anticancer therapies.
Collapse
Affiliation(s)
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Sobhani‐Nasab
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Hossein Motedayyen
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Reza ArefNezhad
- Department of Anatomy, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
2
|
Tyagi R, Bhardwaj R, Suneja P, Sureja AK, Munshi AD, Arya L, Riar A, Verma M. Harnessing sponge gourd: an alternative source of oil and protein for nutritional security. Front Nutr 2023; 10:1158424. [PMID: 37260515 PMCID: PMC10228728 DOI: 10.3389/fnut.2023.1158424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Luffa cylindrica (L.) Roem. is an important cucurbit crop that assures food security and dietary diversity among the poor communities. In the present study, seeds of 42 genotypes of Luffa cylindrica were evaluated for their potential use as oil seed crop. Seed moisture, oil and protein content and fatty acids profile were estimated along with total phenol and sugar content. Significant differences were observed among the various genotypes where oil content ranged from 15.4-29.8% and protein 19.9-30.8%. Total phenol content was high 6.43-12.84 mg/100 g, which bodes well for the sponge gourd seeds' ability to act as antioxidants. Significant correlation were found between important constituents studied like protein and oil, palmitic acid, stearic acid and oleic acid. Total unsaturated fatty acids were in higher amount comparable to saturated fatty acids signifying the good quality of Luffa seed oil. Our research revealed that the NDSG-1, Pusa Sneha, DSG-95, DSG-98, DSG-108, and DSG-26 genotypes were very nutritious due to their high levels of protein, oleic acid, and oil output. Additionally, selection of traits having considerable correlation will be beneficial and help in improved varietal development for usage as an alternative oilseed crop. Our research sheds light on the nutritional value of sponge gourd seeds and suggests using them as a potential source for oil and protein, particularly in underdeveloped countries.
Collapse
Affiliation(s)
- Ruchi Tyagi
- Bioscience and Biotechnology Department, Banasthali University, Banasthali, Rajasthan, India
| | | | - Poonam Suneja
- Germplasm Evaluation Division, ICAR-NBPGR, New Delhi, India
| | | | | | - Lalit Arya
- Division of Genomic Resources, National Research Centre on DNA Fingerprinting, ICAR-NBPGR, New Delhi, India
| | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Manjusha Verma
- Division of Genomic Resources, National Research Centre on DNA Fingerprinting, ICAR-NBPGR, New Delhi, India
| |
Collapse
|
3
|
Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, Sharma A, Kumar D, Chellappan DK, Singh SK, Dua K, Gupta G. Role of Medicinal plant-derived Nutraceuticals as a potential target for the treatment of breast cancer. J Food Biochem 2022; 46:e14387. [PMID: 36121313 DOI: 10.1111/jfbc.14387] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Breast cancer (BC) is one of the most challenging cancers to treat, accounting for many cancer-related deaths. Over some years, chemotherapy, hormone treatment, radiation, and surgeries have been used to treat cancer. Unfortunately, these treatment options are unsuccessful due to crucial adverse reactions and multidrug tolerance/resistance. Although it is clear that substances in the nutraceuticals category have a lot of anti-cancer activity, using a supplementary therapy strategy, in this case, could be very beneficial. Nutraceuticals are therapeutic agents, which are nutrients that have drug-like characteristics and can be used to treat diseases. Plant nutraceuticals categorized into polyphenols, terpenoids, vitamins, alkaloids, and flavonoids are part of health food products, that have great potential for combating BC. Nutraceuticals can reduce BC's severity, limit malignant cell growth, and modify cancer-related mechanisms. Nutraceuticals acting by attenuating Hedgehog, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and Wnt/β-catenin signaling are the main pathways in controlling the self-renewal of breast cancer stem cells (BCSCs). This article reviews some important nutraceuticals and their modes of action, which can be very powerful versus BC. PRACTICAL APPLICATIONS: Nutraceuticals' importance to the control and diagnosis of breast cancer is undeniable and cannot be overlooked. Natural dietary compounds have a wide range of uses and have been used in traditional medicine. In addition, these natural chemicals can enhance the effectiveness of other traditional medicines. They may also be used as a treatment process independently because of their capacity to affect several cancer pathways. This study highlights a variety of natural chemicals, and their mechanisms of action, routes, synergistic effects, and future potentials are all examined.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Avinash Sharma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Phytochemical Studies, Antioxidant Potential, and Identification of Bioactive Compounds Using GC-MS of the Ethanolic Extract of Luffa cylindrica (L.) Fruit. Appl Biochem Biotechnol 2022; 194:4018-4032. [PMID: 35583705 DOI: 10.1007/s12010-022-03961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 02/02/2023]
Abstract
Luffa cylindrica (L.) is a medicinal plant associated with Cucurbitaceae family which is also known as loofah/sponge gourd, comprising a series of phytochemicals such as chlorophylls, carotenoids, oleanolic acid, saponin, and triterpenoids. The study was carried out to investigate and characterize the bioactive components of ethanolic extract of L. cylindrica. Whole fruit of L. cylindrica was collected, shade dried, pulverized, and extracted successively with ethanol by Soxhlet percolation technique. The crude extracts were later exposed to gas chromatography-mass spectrometry analysis. The profile of the extracts was analyzed for a wide range of secondary metabolites and characterized spectroscopically. A total of 18 components were identified in the ethanolic extract respectively. Prevailing pharmacologically active compounds benzaldehyde, 2-hydroxy-4-methyl-, 4-acetoxy-2-azetidinone, N-decanoic acid, oxirane,2-butyl-3-methyl-, cis, and 3,4-furandiol, tetrahydro-, cis- were present. The extracted compounds were articulated by comparing their retention time and peak area besides the interpretation of mass spectra. Thus, the current study reveals the presence of promising, bioactive components which in turn provides a strength to explore biological activity. In silico molecular docking could be performed for Alzheimer receptors and studied for its activity. Nevertheless, additional studies are required to carry out its bioactivity exploration and toxicity profile.
Collapse
|
5
|
A SNP of betaine aldehyde dehydrogenase (BADH) enhances an aroma (2-acetyl-1-pyrroline) in sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula). Sci Rep 2022; 12:3718. [PMID: 35260602 PMCID: PMC8904516 DOI: 10.1038/s41598-022-07478-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Luffa is a genus of tropical and subtropical vines belonging to the Cucurbitaceae family. Sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula) are two important species of the genus Luffa and are good sources of human nutrition and herbal medicines. As a vegetable, aromatic luffa is more preferred by consumers than nonaromatic luffa. While the aroma trait is present in the sponge gourd, the trait is not present in the ridge gourd. In this study, we identified Luffa cylindrica’s betaine aldehyde dehydrogenase (LcBADH) as a gene associated with aroma in the sponge gourd based on a de novo assembly of public transcriptome data. A single nucleotide polymorphism (SNP: A > G) was identified in exon 5 of LcBADH, causing an amino acid change from tyrosine to cysteine at position 163, which is important for the formation of the substrate binding pocket of the BADH enzyme. Based on the identified SNP, a TaqMan marker, named AroLuff, was developed and validated in 370 F2 progenies of the sponge gourd. The marker genotypes were perfectly associated with the aroma phenotypes, and the segregation ratios supported Mendelian’s simple recessive inheritance. In addition, we demonstrated the use of the AroLuff marker in the introgression of LcBADH from the aromatic sponge gourd to the ridge gourd to improve aroma through interspecific hybridization. The marker proved to be useful in improving the aroma characteristics of both Luffa species.
Collapse
|
6
|
Diltiazem potentiates the cytotoxicity of gemcitabine and 5-fluorouracil in PANC-1 human pancreatic cancer cells through inhibition of P-glycoprotein. Life Sci 2020; 262:118518. [PMID: 33011221 DOI: 10.1016/j.lfs.2020.118518] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
AIM Pancreatic cancer (PC) is one of the most aggressive tumors with dismal survival and a high death rate due to chemotherapeutic failure. P-glycoprotein (P-gp) plays a pivotal role in PC response to gemcitabine and 5-fluorouracil (5-FU). Diltiazem, a calcium channel blocker, is a P-gp inhibitor. In the current study, we investigated the hypothesis that targeting of P-gp by diltiazem can enhance the cytotoxicity of gemcitabine and 5-FU against human pancreatic cancer cells. MAIN METHODS The cytotoxic effect of diltiazem, gemcitabine, and 5-FU in single and combined forms against PANC-1 and AsPC-1 cells were assayed by MTT. Flow cytometric analysis was used for the determination of cell cycle, apoptosis, and stemness markers in PC cells. Besides, immunoblotting was used for assessment of Bax, caspase 3, cyclin D1, and P-gp expressions. KEY FINDINGS Diltiazem co-treatment, either with gemcitabine or 5-FU, synergistically reduced cell viability, induced apoptosis, and caused cell cycle arrest. In addition, diltiazem co-treatment decreased the expressions of stem cell markers CD24 and CD44, increased the expressions of Bax and cleaved caspase 3, enhanced DNA fragmentation, and attenuated cyclin D1 and P-gp expressions as compared to cells treated with either gemcitabine or 5-FU alone. SIGNIFICANCE Our findings suggest that diltiazem may be potential neoadjuvant therapy to enhance the response of PC to gemcitabine or 5-FU treatment.
Collapse
|
7
|
Wu H, Zhao G, Gong H, Li J, Luo C, He X, Luo S, Zheng X, Liu X, Guo J, Chen J, Luo J. A high-quality sponge gourd ( Luffa cylindrica) genome. HORTICULTURE RESEARCH 2020; 7:128. [PMID: 32821411 PMCID: PMC7395165 DOI: 10.1038/s41438-020-00350-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 05/06/2023]
Abstract
Sponge gourd (Luffa cylindrica) is an important cultivated vegetable and medicinal plant in the family Cucurbitaceae. In this study, a draft genome sequence of the sponge gourd inbred line P93075 was analyzed. Using Illumina, PacBio, and 10× Genomics sequencing techniques as well as new assembly techniques such as FALCON and chromatin interaction mapping (Hi-C), a chromosome-scale genome of approximately 656.19 Mb, with an N50 scaffold length of 48.76 Mb, was generated. From this assembly, 25,508 protein-coding gene loci were identified, and 63.81% of the whole-genome consisted of transposable elements, which are major contributors to the expansion of the sponge gourd genome. According to a phylogenetic analysis of conserved genes, the sponge gourd lineage diverged from the bitter gourd lineage approximately 41.6 million years ago. Additionally, many genes that respond to biotic and abiotic stresses were found to be lineage specific or expanded in the sponge gourd genome, as demonstrated by the presence of 462 NBS-LRR genes, a much greater number than are found in the genomes of other cucurbit species; these results are consistent with the high stress resistance of sponge gourd. Collectively, our study provides insights into genome evolution and serves as a valuable reference for the genetic improvement of sponge gourd.
Collapse
Affiliation(s)
- Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Caixia Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Xiaoli He
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Shaobo Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Jinju Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Junqiu Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640 China
| |
Collapse
|
8
|
Yang LW, Wu XJ, Liang Y, Ye GQ, Che YC, Wu XZ, Zhu XJ, Fan HL, Fan XP, Xu JF. miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5. Mol Carcinog 2020; 59:447-461. [PMID: 32096299 DOI: 10.1002/mc.23167] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Effective therapeutic targets for triple-negative breast cancer (TNBC), a special type of breast cancer (BC) with rapid metastasis and poor prognosis, are lacking, especially for patients with chemotherapy resistance. Decitabine (DCA) is a Food and Drug Administration-approved DNA methyltransferase inhibitor that has been proven effective for the treatment of tumors. However, its antitumor effect in cancer cells is limited by multidrug resistance. Cancer stem cells (CSCs), which are thought to act as seeds during tumor formation, regulate tumorigenesis, metastasis, and drug resistance through complex signaling. Our previous study found that miR-155 is upregulated in BC, but whether and how miR-155 regulates DCA resistance is unclear. In this study, we demonstrated that miR-155 was upregulated in CD24- CD44+ BC stem cells (BCSCs). In addition, the overexpression of miR-155 increased the number of CD24- CD44+ CSCs, DCA resistance and tumor clone formation in MDA-231 and BT-549 BC cells, and knockdown of miR-155 inhibited DCA resistance and stemness in BCSCs in vitro. Moreover, miR-155 induced stemness and DCA resistance by inhibiting the direct target gene tetraspanin-5 (TSPAN5). We further confirmed that overexpression of TSPAN5 abrogated the effect of miR-155 in promoting stemness and DCA resistance in BC cells. Our data show that miR-155 increases stemness and DCA resistance in BC cells by targeting TSPAN5. These data provide a therapeutic strategy and mechanistic basis for future possible clinical applications targeting the miR-155/TSPAN5 signaling axis in the treatment of TNBC.
Collapse
Affiliation(s)
- La-Wei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xian-Jin Wu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Yi Liang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guang-Qing Ye
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu-Chuang Che
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xue-Zhen Wu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiao-Jie Zhu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huo-Liang Fan
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiang-Ping Fan
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Patel SB, Attar UA, Sakate DM, Ghane SG. Efficient extraction of cucurbitacins from Diplocyclos palmatus (L.) C. Jeffrey: Optimization using response surface methodology, extraction methods and study of some important bioactivities. Sci Rep 2020; 10:2109. [PMID: 32034276 PMCID: PMC7005863 DOI: 10.1038/s41598-020-58924-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 01/24/2023] Open
Abstract
Diplocyclos palmatus (L.) C. Jeffrey is an important medicinal plant used in several reproductive medicines. It serves as a wide source of tetracyclic triterpens called cucurbitacins. Response surface methodology (RSM) with Box-Behnken design (BBD) was studied to optimize the production of cucurbitacins. RSM put forth the ideal conditions such as 1:30 SS ratio (g/mL), 80 rpm (mixing extraction speed), 150 µm mean particle size, 30 min extraction time and 50 °C using chloroform in continuous shaking extraction (CSE) and showed the highest cucurbitacin I (CUI) content (2.345 ± 0.1686 mg/g DW). Similarly, the highest yield of cucurbitacin B (CUB) (1.584 ± 0.15 mg/g DW) was recorded at ideal conditions (1:40 g/mL SS ratio and 60 min time and others similar to CUI). Among the tested extraction methods, the highest CUI, CUB, and CUI + B yield (1.437 ± 0.03, 0.782 ± 0.10, 2.17 ± 0.35 mg/g DW, respectively) as well as promising DPPH radical scavenging activity (25.06 ± 0.1 µgAAE/g DW) were recorded from the SBAE (steam bath assisted extraction). In addition, MAE and UAE revealed the highest inhibition of α-amylase (68.68%) and α-glucosidase (56.27%) enzymes, respectively. Fruit extracts showed potent anticancer activity against breast (MCF-7) and colon (HT-29) cancer cell lines (LC50 - 44.27 and 46.88 µg/mL, respectively). Our study proved that SS ratio, particle size and temperature were the most positively influencing variables and served to be the most efficient for the highest recovery of CUI and CUB. Based on the present study, the fruits of D. palmatus were revealed as a potent antioxidant, anti-diabetic and anticancer bio-resource that could be explored further to develop novel drug to manage diabetes, cancer and oxidative stress related disorders.
Collapse
Affiliation(s)
- S B Patel
- Plant Physiology Laboratory, Department of Botany, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - U A Attar
- Plant Physiology Laboratory, Department of Botany, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - D M Sakate
- Department of Statistics, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - S G Ghane
- Plant Physiology Laboratory, Department of Botany, Shivaji University, Kolhapur, 416 004, Maharashtra, India.
| |
Collapse
|