1
|
Zhang D, Li D, Wang X, Sui Y, Ma F, Dai Y, Wang M, Qin W. Urine Proteomic Signatures of Mild Hypothermia Treatment in Cerebral Ischemia-Reperfusion Injury in Rats. Cell Mol Neurobiol 2024; 44:49. [PMID: 38836960 PMCID: PMC11153299 DOI: 10.1007/s10571-024-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Dapeng Li
- Department of Bone and Joint Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Xueting Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Yanyan Sui
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Fuguo Ma
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| |
Collapse
|
2
|
Li Z, Li X, Tang S, Gao Q, Li C, Chen P, Yue X, Fu R, Huang X, Zhang Y, Yang H, Yang B. Moringa oleifera Lam. Leaf improves constipation of rats induced by low-fiber-diet: A proteomics study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116936. [PMID: 37487963 DOI: 10.1016/j.jep.2023.116936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaf of Moringa oleifera Lam., a medicinal and edible herb for thousands of years in Ayurveda, is used as Pancha (na) karma (purgative) during and after the body cleansing process, to treat constipation, reduce cholesterol and body weight. AIM OF STUDY The aim was to investigate the diarrhea effects and possible mechanism of M. oleifera leaves in constipation rats. MATERIALS AND METHODS The hot water extract of M. oleifera leaves (WEMOL) was prepared and analyzed using LC-20AT HPLC system. The constipated rat model was induced by feeding with low fiber diet for 21 days. After oral administration of WEMOL for 7 days, the excretion parameter analysis, gastro-intestinal propulsion, histological analysis by HE and Alcian blue staining, and gastrointestinal hormone in rat's digestive tract through ELISA were used to evaluate the laxative effect of WEMOL. Label-free quantitation (LFQ) with LC-MS/MS, bioinformatics and Western blot were used to discover and verify the signal pathways and key proteins of WEMOL related to diarrhea. RESULTS The contents of isoquercitrin and astragalin were 2.7 mg/g and 1.7 mg/g, respectively in WEMOL. The stool number, weight, and water content of constipation rats were significantly reduced, indicating model had been established successfully. WEMOL (1.25 and 2.5 g/kg) increased water content of feces and the levels of Gas, MTL, NPY in gastric antrum and VIP, SP in colon of constipation rats, improved the muscle layer thickness and mucin secretion of colon. The proteomics revealed a total of 1731 differential proteins and 9 signaling pathways, WEMOL increased the expression of Vamp2, Gnai3, and Prkacb. CONCLUSIONS The laxative mechanism of WEMOL maybe modulate the signaling pathways mediated by 5-HT and Ach receptors, related to gastrointestinal motility and intestinal fluid secretion. It can be considered as the scientific connotation of Pancha (na) karma of M. oleifera leaves in ayurveda.
Collapse
Affiliation(s)
- Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Pharmacy, Minzu University of China. Beijing, 100081, China
| | - Xianyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixia Gao
- School of Pharmacy, Minzu University of China. Beijing, 100081, China
| | - Caifeng Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Chen
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingnan Yue
- Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Rao Fu
- School of Pharmacy, Minzu University of China. Beijing, 100081, China
| | - Xiulan Huang
- School of Pharmacy, Minzu University of China. Beijing, 100081, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Wang J, Sun X, Dai Y, Ma Y, Wang M, Li X, Qin W. Proteome profiling of hippocampus reveals the neuroprotective effect of mild hypothermia on global cerebral ischemia-reperfusion injury in rats. Sci Rep 2023; 13:14450. [PMID: 37660166 PMCID: PMC10475051 DOI: 10.1038/s41598-023-41766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Cerebral ischemia is one of the leading causes of disability and mortality worldwide. Blood reperfusion of ischemic cerebral tissue may cause cerebral ischemia-reperfusion (IR) injury. In this study, a rat model of global cerebral I/R injury was established via Pulsinelli's four-vessel occlusion (4-VO) method. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were employed to examine the ipsilateral hippocampus proteome profiles of rats with/without MH (32 °C) treatment after IR injury. Totally 2 122 proteins were identified, among which 153 proteins were significantly changed associated with MH (n = 7 per group, fold change-1.5, p < 0.05). GO annotation of the differentially expressed proteins (DEPs) revealed that cellular oxidant detoxification, response to zinc ions, aging, oxygen transport, negative regulation of catalytic activity, response to hypoxia, regulation of protein phosphorylation, and cellular response to vascular endothelial growth factor stimulus were significantly enriched with MH treatment. The KEGG analysis indicated that metabolic pathways, thermogenesis, pathways of neurodegeneration, chemical carcinogenesis-reactive oxygen species, fluid shear stress and atherosclerosis, and protein processing in endoplasmic reticulum were significantly enriched with MH treatment. Importantly, changes in 16 DEPs were reversed by MH treatment. Among them, VCAM-1, S100A8, CaMKK2 and MKK7 were verified as potential markers associated with MH neuroprotection by Western blot analysis. This study is one of the first to investigate the neuroprotective effects of MH on the hippocampal proteome of experimental models of cerebral IR injury. These DEPs may be involved in the most fundamental molecular mechanisms of MH neuroprotection, and provide a scientific foundation for further promotion of reparative strategies in cerebral IR injury.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Xiaopeng Sun
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Yuan Ma
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Zhang F, Xu X, Hou J, Xiao H, Guo F, Li X, Yang H. Cardioprotective efficacy of Xin-shu-bao tablet in heart failure with reduced ejection fraction by modulating THBD/ARRB1/FGF1/STIM1 signaling. Biomed Pharmacother 2023; 165:115119. [PMID: 37423168 DOI: 10.1016/j.biopha.2023.115119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Traditional Chinese medicine offer unique advantages in mitigating and preventing early or intermediate stage for treating heart failure (HF). The purpose of this study was to assess the in vivo therapeutic efficacy of Xin-shu-bao (XSB) at different stages of HF following induction of a myocardial infarction (MI) in mice and use mass spectrometry-based proteomics to identify potential therapeutic targets for different stages of HF based on the molecular changes following XSB treatment. XSB had high cardioprotective efficacy in the pre-HF with reduced ejection fraction (HFrEF) stages, but had a weak or no effect in the post-HFrEF stages. This was supported by echocardiographic measurements showing that XSB decreased ejection fraction and fractional shortening in HF. XSB administration improved cardiac function in the pre- and post-HFrEF mouse model, ameliorated deleterious changes to the morphology and subcellular structure of cardiomyocytes, and reduced cardiac fibrosis. Proteomics analysis showed that XSB intervention exclusively targeted thrombomodulin (THBD) and stromal interaction molecule 1 (STIM1) proteins when administered to the mice for both 8 and 6 weeks. Furthermore, XSB intervention for 8, 6, and 4 weeks after MI induction increased the expression of fibroblast growth factor 1 (FGF1) and decreased arrestin β1 (ARRB1), which are classic biomarkers of cardiac fibroblast transformation and collagen synthesis, respectively. Overall, the study suggests that early intervention with XSB could be an effective strategy for preventing HFrEF and highlights potential therapeutic targets for further investigation into HFrEF remediation strategies.
Collapse
Affiliation(s)
- Fengrong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinli Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Honghe Xiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Liu X, Xiao X, Han X, Yao L, Lan W. A New Therapeutic Trend: Natural Medicine for Ameliorating Ischemic Stroke via PI3K/Akt Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227963. [PMID: 36432062 PMCID: PMC9694461 DOI: 10.3390/molecules27227963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Ischemic stroke (IS) is an acute cerebrovascular disease caused by sudden arterial occlusion, which is characterized by a high morbidity, mortality, and disability rate. It is one of the most important causes of nervous system morbidity and mortality in the world. In recent years, the search for new medicine for the treatment of IS has become an attractive research focus. Due to the extremely limited time window of traditional medicine treatment, some side effects may occur, and accompanied by the occurrence of adverse reactions, the frequency of exploration with natural medicine is significantly increased. Phosphatidylinositol-3-kinase/Protein kinase B (PI3K/Akt) signaling pathway is a classical pathway for cell metabolism, growth, apoptosis, and other physiological activities. There is considerable research on medicine that treats various diseases through this pathway. This review focuses on how natural medicines (including herbs and insects) regulate important pathophysiological processes such as inflammation, oxidative stress, apoptosis, and autophagy through the PI3K/Akt signaling pathway, and the role it plays in improving IS. We found that many kinds of herbal medicine and insect medicine can alleviate the damage caused by IS through the PI3K/Akt signaling pathway. Moreover, the prescription after their combination can also achieve certain results. Therefore, this review provides a new candidate category for medicine development in the treatment of IS.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
6
|
Yu Z, Liu X, Xing Y, Wang X, Wang X, Huang Y, Han L, Pan G. Identification and Quantification of Characteristic Peptides (Oligopeptides) in Shuxuetong (SXT) Injection by LC–MS/MS. Chromatographia 2022. [DOI: 10.1007/s10337-022-04201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhang Q, Zhang C, Liu C, Zhan H, Li B, Lu Y, Wei H, Cheng J, Li S, Wang C, Hu C, Liao X. Identification and Validation of Novel Potential Pathogenesis and Biomarkers to Predict the Neurological Outcome after Cardiac Arrest. Brain Sci 2022; 12:brainsci12070928. [PMID: 35884735 PMCID: PMC9316619 DOI: 10.3390/brainsci12070928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Predicting neurological outcomes after cardiac arrest remains a major issue. This study aimed to identify novel biomarkers capable of predicting neurological prognosis after cardiac arrest. Expression profiles of GSE29540 and GSE92696 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between high and low brain performance category (CPC) scoring subgroups. Weighted gene co-expression network analysis (WGCNA) was used to screen key gene modules and crossover genes in these datasets. The protein-protein interaction (PPI) network of crossover genes was constructed from the STRING database. Based on the PPI network, the most important hub genes were identified by the cytoHubba plugin of Cytoscape software. Eight hub genes (RPL27, EEF1B2, PFDN5, RBX1, PSMD14, HINT1, SNRPD2, and RPL26) were finally screened and validated, which were downregulated in the group with poor neurological prognosis. In addition, GSEA identified critical pathways associated with these genes. Finally, a Pearson correlation analysis showed that the mRNA expression of hub genes EEF1B2, PSMD14, RPFDN5, RBX1, and SNRPD2 were significantly and positively correlated with NDS scores in rats. Our work could provide comprehensive insights into understanding pathogenesis and potential new biomarkers for predicting neurological outcomes after cardiac arrest.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Cong Liu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Yuanzhen Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Jingge Cheng
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Shuhao Li
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
| | - Chuyue Wang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.Z.); (H.Z.); (H.W.); (S.L.)
- Correspondence: (C.H.); (X.L.)
| | - Xiaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Q.Z.); (C.L.); (B.L.); (Y.L.); (J.C.); (C.W.)
- Correspondence: (C.H.); (X.L.)
| |
Collapse
|
8
|
Meng L, Zhang Y, Li D, Shang X, Hao X, Chen X, Gao F. TIMP3 attenuates cerebral ischemia/reperfusion-induced apoptosis and oxidative stress in neurocytes by regulating the AKT pathway. Exp Ther Med 2021; 22:973. [PMID: 34335915 PMCID: PMC8290470 DOI: 10.3892/etm.2021.10405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke seriously threatens human health and creates a large social burden. The present study investigated whether tissue inhibitor of metalloproteinases-3 (TIMP3) prevented cerebral ischemia/reperfusion (I/R), with the aim to explore the underlying mechanism. A transient middle cerebral artery occlusion model was conducted in mice, and oxygen glucose deprivation and reoxygenation (OGD/R) was investigated in PC12 cells to mimic cerebral ischemia-reperfusion injury (CIRI). Western blotting was used to determine the expression of TIMP3, Bax, Bcl-2 and AKT. TUNEL was used to detect apoptosis in cerebral tissues or cultured PC12 cells. Expression levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) were detected to reveal oxidative stress. The results demonstrated that TIMP3 expression was significantly decreased after I/R in vivo or OGD/R in vitro, and the number of TUNEL-positive cells was reduced by the overexpression of TIMP3. The attenuation of Bax/Bcl-2 ratio in OGD/R-induced PC12 cells suppressed the expression levels of ROS and MDA; while also elevating SOD activity in the OGD/R-induced neurocytes in vitro. In addition, TIMP3-overexpression reversed the downregulation of phosphorylated-AKT (Thr308 and Ser473) in OGD/R-treated PC12 cells. However, the anti-apoptotic and anti-oxidative stress roles of TIMP3 in OGD/R-induced PC12 cells were partially abolished after treatment with the AKT inhibitor, AZD5363. Overall, TIMP3 exerted an anti-apoptotic and anti-oxidative stress role in CIRI through the AKT pathway, which may be a potential therapeutic target for the treatment of CIRI.
Collapse
Affiliation(s)
- Linglei Meng
- Department of Imaging, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Yongting Zhang
- Department of Imaging, Xingtai Orthopedic Hospital, Xingtai, Hebei 054001, P.R. China
| | - Demao Li
- Department of Cardiothoracic Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xinfang Shang
- Department of Imaging, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xuejia Hao
- Department of Imaging, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xin Chen
- Department of Neurology, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Fengxiao Gao
- Department of Imaging, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| |
Collapse
|
9
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Wang X, Yan D. Microplate-based antithrombin activity bioassay for Shuxuetong Injection through aptamer-thrombin capturing coupled with chromogenic substrate hydrolysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Wang CH, Pandey S, Sivalingam K, Shibu MA, Kuo WW, Viswanadha VP, Lin YC, Liao SC, Huang CY. Leech extract: A candidate cardioprotective against hypertension-induced cardiac hypertrophy and fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113346. [PMID: 32896627 DOI: 10.1016/j.jep.2020.113346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of cardiovascular diseases (CVDs) has been increasing worldwide. Despite significant improvements in therapeutics and on-going developments of novel targeted-treatment regimens, cardiac diseases lack effective preventive and curative therapies with minimal side effects. Therefore, there is an urgent need to identify and propagate alternative and complementary therapies against cardiovascular diseases. Some traditional Chinese medicines can contribute to the prevention and treatment of CVDs and other chronic diseases, with few side effects. Hirudo, a medicinal leech, has been acclaimed for improving blood circulation and overcoming blood stagnation; however, the precise molecular mechanisms of leech extract treatment against pathological cardiac remodeling remain elusive. In this study, we aimed to delineate the molecular mechanisms of medicinal leech extract in the treatment of cardiac hypertrophy and fibrosis, using both in vitro and in vivo assessments. MATERIALS AND METHODS We conducted in vitro and in vivo animal experiments, including cell-viability assays, fluorescence microscopy, immunoblotting, immunohistochemistry, and Masson's trichrome staining. RESULTS Pre-treatment with leech extract conferred a survival benefit to spontaneously-hypertensive rats (SHRs) and significantly reduced angiotensin II (ANG II)-induced cardiac hypertrophy and fibrosis. ANG II-stimulated cardiac hypertrophy markers were attenuated by leech extract treatment, versus controls. Translational expression of stress-associated mitogen-activated protein kinases (MAPKs) was also repressed. In vivo, leech extract treatment significantly ameliorated the cardiac hypertrophy phenotype in SHRs and diminished interstitial fibrosis, accompanied with reduced fibrosis markers. CONCLUSION Leech extract treatment under a hypertensive condition exerted significant cardio-protective benefits by reducing the expression of cardiac hypertrophy-related transcription factors, stress-associated MAPKs, and fibrosis mediators. Our findings imply that medicinal leach extract may be effective against hypertension-induced cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kalaiselvi Sivalingam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | - Yuan-Chuan Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
12
|
Xu Z, Liu X, Li Y, Gao H, He T, Zhang C, Hao W, Teng X. Shuxuetong injection simultaneously ameliorates dexamethasone-driven vascular calcification and osteoporosis. Exp Ther Med 2021; 21:197. [PMID: 33488806 PMCID: PMC7812579 DOI: 10.3892/etm.2021.9630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis (OP) and vascular calcification (VC) share a number of common risk factors, pathophysiological mechanisms and etiology, which are known as bone-vascular axis. The present study aimed to investigate the effects of Shuxuetong (SXT) injection on VC and osteoporosis. A rat model of VC and osteoporosis was induced by dexamethasone (DEX; 1 mg/kg/day for 4 weeks, intramuscularly). Simultaneously, 0.6 ml/kg/day SXT was intraperitoneally injected. Compared with control rats, DEX induced significantly more VC and OP, as determined by increased calcium deposition and alkaline phosphatase activity in the aorta, disturbed structure, decreased levels of cortical bone thickness and trabecular bone area, and increased apoptosis in the bone. SXT injection ameliorated DEX-induced VC and osteoporosis; furthermore, the osteoblastic differentiation of vascular smooth muscle cells and the activation of endoplasmic reticulum stress in the DEX group was also prevented by SXT injection. Compared with control rats, protein expression levels of sclerostin, a crucial crosslink of the bone-vascular axis, were significantly increased in the aorta and bone of rats with DEX, which was also attenuated by SXT injection. Thus, the present study suggested that SXT injection could ameliorate both VC and OP, and may be mediated by the regulation of sclerostin. The present study may provide the basis a novel strategy for the prevention and treatment of VC and OP, which emerge as side-effects of glucocorticoids.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaoguang Liu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Yanqing Li
- Department of Gynecology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongliang Gao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Tao He
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunlei Zhang
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Hao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
13
|
Fang H, Zhou H, Zhang J, Li Z, Chen Z, Yuan R, Huang X, Yang J, Zhang J, Wang S, Huang Y, Hu S. Effects of shuxuetong injection for cerebral infarction: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21929. [PMID: 32871932 PMCID: PMC7458199 DOI: 10.1097/md.0000000000021929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cerebral infarction (CI) is a common disease with high morbidity and disability. Shuxuetong (SXT) injection is a Chinese Materia Medica standardized product used in the treatment of CI. Currently, there is a lack of high-quality evidence to support the effectiveness and safety of SXT on patients with CI. This systematic review protocol aims at describing a meta-analysis to evaluate the efficacy of SXT for the treatment of CI. METHODS We will search the databases of PubMed, MEDLINE, Embase, Cochrane Library Central Register of Controlled Trials, China national knowledge infrastructure database (CNKI), Wan fang database, Chongqing VIP information, and SinoMed from their inception to Jun 2020. Two reviewers will independently screen Randomized controlled trials of SXT for the treatment of CI. The meta-analysis will be conducted using RevMan V.5.3 software. RESULTS The results of this study will be published in a peer-reviewed journal. CONCLUSION The conclusion of our systematic review will provide evidence to judge whether SXT is an effective intervention for patients with CI. TRIAL REGISTRATION NUMBER 10.17605/OSF.IO/3F6ZH.
Collapse
Affiliation(s)
- Hua Fang
- The Second Affiliated Hospital of Nanchang University, Nanchang
| | - Honglong Zhou
- The Second Affiliated Hospital of Nanchang University, Nanchang
| | - Jicai Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang
| | - Ziyi Li
- The Second Affiliated Hospital of Nanchang University, Nanchang
| | - Zhen Chen
- The Second Affiliated Hospital of Nanchang University, Nanchang
| | - RaoRao Yuan
- The Second Affiliated Hospital of Nanchang University, Nanchang
| | - Xiangqun Huang
- The Second Affiliated Hospital of Nanchang University, Nanchang
| | | | | | - Shuo Wang
- The Second People's Hospital of Jingdezhen, Jingdezhen, China
| | - Yong Huang
- Nanfeng People's Hospital, Nanfeng, China
| | - Shangwei Hu
- The Second Affiliated Hospital of Nanchang University, Nanchang
| |
Collapse
|
14
|
Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends Biotechnol 2020; 39:43-58. [PMID: 32505359 DOI: 10.1016/j.tibtech.2020.05.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
Revealing fine-scale cellular heterogeneity among spatial context and the functional and structural foundations of tissue architecture is fundamental within biological research and pharmacology. Unlike traditional approaches involving single molecules or bulk omics, cutting-edge, spatially resolved transcriptomics techniques offer near-single-cell or even subcellular resolution within tissues. Massive information across higher dimensions along with position-coordinating labels can better map the whole 3D transcriptional landscape of tissues. In this review, we focus on developments and strategies in spatially resolved transcriptomics, compare the cell and gene throughput and spatial resolution in detail for existing methods, and highlight the enormous potential in biomedical research.
Collapse
Affiliation(s)
- Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ling Zhu
- The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia.
| |
Collapse
|