1
|
Wang P, Gu Y, Lu J, Song M, Hou W, Li P, Sun Y, Wang J, Chen X. Endothelial TRPV4 channel mediates the vasodilation induced by Tanshinone IIA. Chem Biol Interact 2024; 402:111181. [PMID: 39089414 DOI: 10.1016/j.cbi.2024.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Tanshinone IIA (TSA), the main lipo-soluble component from the dried rhizome of Salvia miltiorrhiza, has been shown to induce vasodilation. However, the underlying mechanisms remains unclear. This study aimed to investigate the effect of TSA on the vasodilation of small resistant arteries ex vivo. Vascular myography revealed that endothelial denudation reduced significantly the vasodilatory effect of TSA. Blocking transient receptor potential vanilloid 4 (TRPV4) channels prevented TSA-induced vasodilation. Whole-cell patch-clamp analysis revealed that the current passing through TRPV4 channels increased after TSA treatment in endothelial cells (ECs). This was attributed to reduced TRPV4 protein degradation along with its increased expression. The TRPV4 inhibitor HC-067047 lowed nitric oxide (NO) production and TSA-induced expression of endothelial nitric oxide synthase (eNOS). Moreover, it increased the production of cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG). The present results indicate that TSA induces endothelium-dependent vasodilation, which is mediated by the TRPV4-NO-PKG signaling pathway. These findings highlight the potential of TSA, a compound known in traditional Chinese medicine as Danshen (Salvia miltiorrhiza), for future cardiovascular therapeutic strategies.
Collapse
Affiliation(s)
- Pei Wang
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yuanyuan Gu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingping Lu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaohu Chen
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
2
|
Zhang H, Duan CP, Yuan X, Luo X, Song ZY, Yang YN, Jiang JS, Zhang PC. Highly oxidized rearranged derivatives of quinochalcone C-glycosides from Carthamus tinctorius. PHYTOCHEMISTRY 2024; 222:114094. [PMID: 38604325 DOI: 10.1016/j.phytochem.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Safflopentsides A-C (1-3), three highly oxidized rearranged derivatives of quinochalcone C-glycosides, were isolated from the safflower yellow pigments. Their structures were determined based on a detailed spectroscopic analysis (UV, IR, HR-ESI-MS, 1D and 2D NMR), and the absolute configurations were confirmed by the comparison of experimental ECD spectra with calculated ECD spectra. Compounds 1-3 have an unprecedented cyclopentenone or cyclobutenolide ring A containing C-glucosyl group, respectively. The plausible biosynthetic pathways of compounds have been presented. At 10 μM, 2 showed strong inhibitory activity against rat cerebral cortical neurons damage induced by glutamate and oxygen sugar deprivation.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen-Ping Duan
- Shanxi De Yuan Tang Pharmaceutical Co. Ltd, Jinzhong, 030600, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xia Luo
- Shanxi De Yuan Tang Pharmaceutical Co. Ltd, Jinzhong, 030600, China
| | - Zhi-Ying Song
- Shanxi De Yuan Tang Pharmaceutical Co. Ltd, Jinzhong, 030600, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Chen S, Niu Z, Shen Y, Lu W, Zhao J, Yang H, Guo M, Zhang L, Zheng R, Du G, Li L. Naodesheng decoction regulating vascular function via G-protein-coupled receptors: network analysis and experimental investigations. Front Pharmacol 2024; 15:1355169. [PMID: 38533257 PMCID: PMC10963398 DOI: 10.3389/fphar.2024.1355169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Recanalization of blocked blood vessels and restoring blood supply to ischemic brain tissue are crucial for post-stroke rehabilitation. The decoction Naodesheng (NDS) composed of five Chinese botanical drugs, including Panax notoginseng (Burk.) F. H. Chen, Ligusticum chuanxiong Hort., Carthamus tinctorius L., Pueraria lobata (Willd.) Ohwi, and Crataegus pinnatifida Bge., is a blood-activating and stasis-removing herbal medicine commonly used for the clinical treatment of cerebrovascular diseases in China. However, the material basis of NDS on the effects of blood circulation improvement and vascular tone regulation remains unclear. Methods: A database comprising 777 chemical metabolites of NDS was constructed. Then, the interactions between various herbal metabolites of NDS and five vascular tone modulation G-protein-coupled receptors (GPCRs), including 5-HT1AR, 5-HT1BR, β2-AR, AT1R, and ETBR, were assessed by molecular docking. Using network analysis and vasomotor experiment of the cerebral basilar artery, the potential material basis underlying the vascular regulatory effects of NDS was further explored. Results: The Naodesheng Effective Component Group (NECG) was found to induce relaxation of rat basilar artery rings precontracted using Endothelin-1 (ET-1) and KCl in vitro in a dose-dependent manner. Several metabolites of NDS, including C. tinctorius, C. pinnatifida, and P. notoginseng, were found to be the main plant resources of metabolites with high docking scores. Furthermore, several metabolites in NDS, including formononetin-7-glucoside, hydroxybenzoyl-coumaric anhydride, methoxymecambridine, puerarol, and pyrethrin II, were found to target multiple vascular GPCRs. Metabolites with moderate-to-high binding energy were verified to have good rat basilar artery-relaxing effects, and the maximum artery relaxation effects of all three metabolites, namely, isorhamnetin, kaempferol, and daidzein, were found to exceed 90%. Moreover, metabolites of NDS were found to exert a synergistic effect by interacting with vascular GPCR targets, and these metabolites may contribute to the cerebrovascular regulatory function of NDS. Discussion: The study reports that various metabolites of NDS contribute to its vascular tone regulating effects and demonstrates the multi-component and multi-target characteristics of NDS. Among them, metabolites with moderate-to-high binding scores in NDS may play an important role in regulating vascular function.
Collapse
Affiliation(s)
- Shuhan Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziran Niu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wendan Lu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilin Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minmin Guo
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, Xinjiang, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Liu G, Liu J, Kong X, Xiong WJ, Jiang R. Effect of hypoandrogenism on expression of transient receptor potential vanilloid channels in rat penile corpus cavernosum and erectile function. J Sex Med 2023; 20:1153-1160. [PMID: 37490314 DOI: 10.1093/jsxmed/qdad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Hypoandrogenism is a cause of erectile dysfunction (ED). Vascular smooth muscle cell contraction and relaxation are regulated by TRPV1-4 channels. However, the influence of hypoandrogenism on TRPV1-4 and its relationship with erectile function remain unclear. AIM To reveal whether hypoandrogenism affects erectile function by influencing TRPV1-4 expression in the corpus cavernosum of rats. METHODS Male Sprague-Dawley rats (N = 36) aged 8 weeks were assigned to 6 groups at random (n = 6): sham operation, castrated, castrated + testosterone replacement, sham operation + transfection, castrated + transfection, and castrated + empty transfection. Four weeks after castration, 20 μL of lentiviral vector (1 × 108 TU/mL) carrying the TRPV4 gene was injected into the penile cavernous tissue of the transfection groups. One week after transfection, the maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP) and the content of TRPV1-4, phosphorylated eNOS (p-eNOS)/eNOS, and nitric oxide (NO) in penile cavernous tissue of each group were measured. OUTCOMES Under low androgen conditions, TRPV4 expression in endothelial cells in the rat penile cavernosum was sharply reduced, resulting in a decrease in p-eNOS/eNOS and NO content, which could inhibit erectile function. RESULTS In rat penile cavernous tissue, TRPV1-4 was expressed in the cell membranes of endothelial cells and smooth muscle cells. The ICPmax/MAP and the content of TRPV4, p-eNOS/eNOS, and NO end product nitrite level in rat penile cavernous tissue was markedly reduced in the castrated group as compared with the sham group (P < .05). The ICPmax/MAP and the content of TRPV4, p-eNOS/eNOS, and NO end product nitrite level in rat penile cavernous tissue were markedly improved in the castrated + transfection group vs the castrated group (P < .01). CLINICAL IMPLICATIONS Upregulation of TRPV4 expression in penile cavernosum tissue might be a viable therapeutic for ED caused by hypoandrogenism. STRENGTHS AND LIMITATIONS The specific mechanism of TRPV4 in ED needs to be further verified by androgen receptor or TRPV4 gene knockout experiments. CONCLUSION Hypoandrogenism may cause ED by reducing the expression of TRPV4 in rat penile cavernous tissue. Upregulation of TRPV4 expression in penile cavernous tissue can increase the ratio of p-eNOS/eNOS and NO levels and ameliorate the erectile function of castrated rats.
Collapse
Affiliation(s)
- Gang Liu
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Liu
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiangjun Kong
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wen-Ju Xiong
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
5
|
Li H, Zhang Q. Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals (Basel) 2023; 16:1201. [PMID: 37765009 PMCID: PMC10534649 DOI: 10.3390/ph16091201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium, as the guardian of vascular homeostasis, is closely related to the occurrence and development of cardiovascular diseases (CVDs). As an early marker of the development of a series of vascular diseases, endothelial dysfunction is often accompanied by oxidative stress and inflammatory response. Natural flavonoids in fruits, vegetables, and Chinese herbal medicines have been shown to induce and regulate endothelial cells and exert anti-inflammatory, anti-oxidative stress, and anti-aging effects in a large number of in vitro models and in vivo experiments so as to achieve the prevention and improvement of cardiovascular disease. Focusing on endothelial mediation, this paper introduces the signaling pathways involved in the improvement of endothelial dysfunction by common dietary and flavonoids in traditional Chinese medicine and describes them based on their metabolism in the human body and their relationship with the intestinal flora. The aim of this paper is to demonstrate the broad pharmacological activity and target development potential of flavonoids as food supplements and drug components in regulating endothelial function and thus in the prevention and treatment of cardiovascular diseases. This paper also introduces the application of some new nanoparticle carriers in order to improve their bioavailability in the human body and play a broader role in vascular protection.
Collapse
Affiliation(s)
| | - Qi Zhang
- The Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| |
Collapse
|
6
|
Zhang X, Ahmad N, Zhang Q, Wakeel Umar A, Wang N, Zhao X, Zhou K, Yao N, Liu X. Safflower Flavonoid 3′5′Hydroxylase Promotes Methyl Jasmonate-induced Anthocyanin Accumulation in Transgenic Plants. Molecules 2023; 28:molecules28073205. [PMID: 37049967 PMCID: PMC10095914 DOI: 10.3390/molecules28073205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Flavonoids are the most abundant class of secondary metabolites that are ubiquitously involved in plant development and resistance to biotic and abiotic stresses. Flavonoid biosynthesis involves multiple channels of orchestrated molecular regulatory factors. Methyl jasmonate (MeJA) has been demonstrated to enhance flavonoid accumulation in numerous plant species; however, the underlying molecular mechanism of MeJA-induced flavonoid biosynthesis in safflower is still not evident. In the present study, we revealed the underlying molecular basis of a putative F3′5′H gene from safflower imparting MeJA-induced flavonoid accumulation in transgenic plants. The constitutive expression of the CtF3′5′H1 gene was validated at different flowering stages, indicating their diverse transcriptional regulation through flower development in safflower. Similarly, the CtF3′5′H1-overexpressed Arabidopsis plants exhibit a higher expression level, with significantly increased anthocyanins and flavonoid content, but less proanthocyanidins than wild-type plants. In addition, transgenic plants treated with exogenous MeJA revealed the up-regulation of CtF3′5′H1 expression over different time points with significantly enhanced anthocyanin and flavonoid content as confirmed by HPLC analysis. Moreover, CtF3′5′H1- overexpressed Arabidopsis plants under methyl violet and UV-B irradiation also indicated significant increase in the expression level of CtF3′5′H1 with improved anthocyanin and flavonoid content, respectively. Noticeably, the virus-induced gene silencing (VIGS) assay of CtF3′5′H1 in safflower leaves also confirmed reduced anthocyanin accumulation. However, the CtF3′5′H1 suppression in safflower leaves under MeJA elicitation demonstrated significant increase in total flavonoid content. Together, our findings confirmed that CtF3′5′H1 is likely mediating methyl jasmonate-induced flavonoid biosynthesis in transgenic plants via enhanced anthocyanin accumulation.
Collapse
Affiliation(s)
- Xinyue Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyu Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519088, China
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xu Zhao
- Jilin Province Institute of Product Quality Supervision and Inspection, Changchun 130022, China
| | - Kang Zhou
- Jilin Province Science and Technology Information Research Institute, Shenzhen Street 940, Changchun 130033, China
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Molecular encapsulation of bioactive ingredients from Xuefu Zhuyu decoction by cyclodextrin-assisted extraction. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Identification of prototype compounds and their metabolites in rats' serum from Xuefu Zhuyu Decoction by UPLC-Q-TOF/MS. CHINESE HERBAL MEDICINES 2023; 15:139-150. [PMID: 36875444 PMCID: PMC9975640 DOI: 10.1016/j.chmed.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Objective As a classic prescription in traditional Chinese medicine, Xuefu Zhuyu Decoction (XFZYD) has been widely used in the clinical treatment of cardiovascular and cerebrovascular diseases. In order to unveil the potentially effective compounds, a rapid ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method was established to identify prototype compounds and their metabolites from XFZYD in rats' serum. Methods The serum from rats after intragastric administration of XFZYD aqueous extract was analyzed by UPLC-Q-TOF/MS method. The prototype compounds and their metabolites were identified by comparison with the reference standards and tentatively characterized by comprehensively analyzing the retention time, MS data, characteristic MS fragmentation pattern and retrieving literatures. Results A total of 175 compounds (24 prototype compounds and 151 metabolites) were identified and tentatively characterized. The metabolic pathways of prototype compounds in vivo were also summarized, including glucuronidation, hydrolyzation, sulfation, demethylation, and hydroxylation, and so on. Conclusion In this study, a UPLC-Q-TOF/MS technique was developed to analyze prototype compounds and their metabolites from XFZYD in serum, which would provide the evidence for further studying the effective compounds of XFZYD.
Collapse
|
9
|
Ligusticum chuanxiong promotes the angiogenesis of preovulatory follicles (F1-F3) in late-phase laying hens. Poult Sci 2022; 102:102430. [PMID: 36621100 PMCID: PMC9841292 DOI: 10.1016/j.psj.2022.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Ligusticum chuanxiong (CX) is a traditional Chinese medicine that is widely planted throughout the world. CX is one of the most important and commonly used drugs to enhance blood circulation. The preovulatory follicles in laying hens have a large number of blood arteries and meridians that feed the follicles' growth and maturation with nutrients, hormones, and cytokines. With the extension of laying time, preovulatory follicles angiogenesis decreased gradually. In this study, we studied the mechanism of CX on preovulatory follicles angiogenesis in late-phase laying hens. The results show that CX extract can increase the angiogenesis of preovulatory follicles (F1-F3) of late-phase laying hens. CX extract can promote vascular endothelial growth factor receptor 2 (VEGFR2) phosphorylation in preovulatory follicles theca layers, promote the proliferation, invasion and migration through PI3K/AKT and RAS/ERK signaling pathways in primary follicle microvascular endothelial-like cells (FMECs). In addition, CX extract can up-regulate the expression of hypoxia inducible factor α (HIF1α) in granulosa cells (GCs) and granulosa layers through PI3K/AKT and RAS/ERK signaling pathways, thereby promoting the secretion of vascular endothelial growth factor A (VEGFA). In conclusion, the current study confirmed the promoting effect of CX extract on the preovulatory follicles angiogenesis, which sets the stage for the design of functional animal feed for late-phase laying hens.
Collapse
|
10
|
Integrating Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Hydroxysafflor Yellow A in Delaying Liver Aging. Int J Mol Sci 2022; 23:ijms232214281. [PMID: 36430769 PMCID: PMC9697017 DOI: 10.3390/ijms232214281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Aging affects the structure and function of the liver. Hydroxysafflor yellow A (HSYA) effectively improves liver aging (LA) in mice, but the potential mechanisms require further exploration. In this study, an integrated approach combining network pharmacology and transcriptomics was used to elucidate the potential mechanisms of HSYA delay of LA. The targets of HSYA were predicted using the PharmMapper, SwissTargetPrediction, and CTD databases, and the targets of LA were collected from the GeneCards database. An ontology (GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of genes related to HSYA delay of LA were performed using the DAVID database, and Cytoscape software was used to construct an HSYA target pathway network. The BMKCloud platform was used to sequence mRNA from mouse liver tissue, screen differentially expressed genes (DEGs) that were altered by HSYA, and enrich their biological functions and signaling pathways through the OmicShare database. The results of the network pharmacology and transcriptomic analyses were combined. Then, quantitative real-time PCR (qRT-PCR) and Western blot experiments were used to further verify the prediction results. Finally, the interactions between HSYA and key targets were assessed by molecular docking. The results showed that 199 potentially targeted genes according to network pharmacology and 480 DEGs according to transcriptomics were involved in the effects of HSYA against LA. An integrated analysis revealed that four key targets, including HSP90AA1, ATP2A1, NOS1 and CRAT, as well as their three related pathways (the calcium signaling pathway, estrogen signaling pathway and cGMP-PKG signaling pathway), were closely related to the therapeutic effects of HSYA. A gene and protein expression analysis revealed that HSYA significantly inhibited the expressions of HSP90AA1, ATP2A1 and NOS1 in the liver tissue of aging mice. The molecular docking results showed that HSYA had high affinities with the HSP90AA1, ATP2A1 and NOS1 targets. Our data demonstrate that HSYA may delay LA in mice by inhibiting the expressions of HSP90AA1, ATP2A1 and NOS1 and regulating the calcium signaling pathway, the estrogen signaling pathway, and the cGMP-PKG signaling pathway.
Collapse
|
11
|
Hydroxysafflor Yellow A Blocks HIF-1α Induction of NOX2 and Protects ZO-1 Protein in Cerebral Microvascular Endothelium. Antioxidants (Basel) 2022; 11:antiox11040728. [PMID: 35453413 PMCID: PMC9025668 DOI: 10.3390/antiox11040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022] Open
Abstract
Zonula occludens-1 (ZO-1) is a tight junction protein in the cerebrovascular endothelium, responsible for blood–brain barrier function. Hydroxysafflor yellow A (HSYA) is a major ingredient of safflower (Carthamus tinctorius L.) with antioxidative activity. This study investigated whether HSYA protected ZO-1 by targeting ROS-generating NADPH oxidases (NOXs). HSYA administration reduced cerebral vascular leakage with ZO-1 protection in mice after photothrombotic stroke, largely due to suppression of ROS-associated inflammation. In LPS-stimulated brain microvascular endothelial cells, HSYA increased the ratio of NAD+/NADH to restore Sirt1 induction, which bound to Von Hippel–Lindau to promote HIF-1αdegradation. NOX2 was the predominant isoform of NOXs in endothelial cells and HIF-1α transcriptionally upregulated p47phox and Nox2 subunits for the assembly of the NOX2 complex, but the signaling cascades were blocked by HSYA via HIF-1α inactivation. When oxidate stress impaired ZO-1 protein, HSYA attenuated carbonyl modification and prevented ZO-1 protein from 20S proteasomal degradation, eventually protecting endothelial integrity. In microvascular ZO-1 deficient mice, we further confirmed that HSYA protected cerebrovascular integrity and attenuated ischemic injury in a manner that was dependent on ZO-1 protection. HSYA blocked HIF-1α/NOX2 signaling cascades to protect ZO-1 stability, suggestive of a potential therapeutic strategy against ischemic brain injury.
Collapse
|
12
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
14
|
Xue X, Deng Y, Wang J, Zhou M, Liao L, Wang C, Peng C, Li Y. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L with good effect of alleviating atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153694. [PMID: 34403879 DOI: 10.1016/j.phymed.2021.153694] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic vascular inflammatory disease with complex pathogenesis. Its serious consequence is insufficient blood supply to heart and brain, which eventually leads to myocardial ischemia, infarction and stroke. Hydroxysafflor yellow A (HSYA), a single chalcone glycoside compound with a variety of pharmacological effects, which has shown a potential biological activity for prevention and treatment of atherosclerosis. PURPOSE The main purpose of this review is to comprehensively elucidate the mechanism of HSYA on atherosclerosis and its risk factors (hyperlipidemia, hypertension and diabetes mellitus). METHOD The literatures on HSYA in the treatment of atherosclerosis and its risk factors were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, including in vitro (cell), in vivo (animal) and clinical (human) studies, and summarized reasonably. RESULTS HSYA is a promising natural product for treating atherosclerosis. It can suppress foam cell formation, vascular endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, and platelet activation. The mechanisms are achieved by regulating the reverse cholesterol transport process, fatty acid synthesis, oxidative stress, PI3K/Akt/mTOR, NLRP3 inflammasome, TNFR1/NF-κB, NO-cGMP, Bax/Bcl-2, MAPKs, CDK/CyclinD and TLR4/Rac1/Akt signaling pathways. Besides, HSYA is devoted to lowering blood lipids, regulating ion channels, reducing vascular inflammation, and protecting pancreatic beta cells, which is conducive to reducing the harm of independent risk factors of atherosclerosis. CONCLUSIONS HSYA exhibits the preventive and therapeutic effects on atherosclerosis and its risk factors in vivo and in vitro, which is relevant to multiple mechanisms. The clinical trials of HSYA need to be further investigated to provide a solid foundation for its clinical application.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Wang LW, Cui XY, He JF, Duan S, Liu CR, Shan CB, Wang Y, Ma CM. Hydroxysafflor yellows alleviate thrombosis and acetaminophen-induced toxicity in vivo by enhancing blood circulation and poison excretion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153579. [PMID: 33991865 DOI: 10.1016/j.phymed.2021.153579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hydroxysafflor yellow A (HSYA) from the flower of Carthamus tinctorius (Safflower) has been reported to have various pharmacological effects. However, little is known about the bioactivities of other chemical constituents in Safflower and the relationship between enhancement of blood circulation and hepatoprotection by HSYA. PURPOSE The present research was to evaluate the antithrombotic and hepatoprotective activities of HSYA and C, examine their mechanisms of actions, including influence on the excretion velocity of acetaminophen, and the relationship between the antithrombotic, hepatoprotective, and other bioactivities. METHODS The hepatoprotective activities were examined by acetaminophen (APAP)-induced zebrafish toxicity and carbon tetrachloride (CCl4)-induced mouse liver injury. The concentrations of APAP in zebrafish and APAP that was excreted to the culture media were quantified by UHPLC-MS. The anti-thrombosis effect of HSYA and C were examined by the phenylhydrazine (PHZ)-induced zebrafish thrombosis. RESULTS HSYA and HSYC showed robust protection on APAP-induced toxicity and PHZ-induced thrombosis. The hepatoprotective effects of HSYA and C were more potent than that of the positive control, acetylcysteine (61.7% and 58.0%, respectively, vs. 56.9% at 100 µM) and their antithrombosis effects were more robust than aspirin (95.1% and 86.2% vs. 52.7% at 100 µM). HSYA and C enhanced blood circulation, rescued APAP-treated zebrafish from morphological abnormalities, and mitigated APAP-induced toxicity in liver development in liver-specific RFP-expressing transgenic zebrafish. HSYC attenuated CCl4-induced mouse liver injury and regulated the levels of HIF-1α, iNOS, TNF-α, α-SMA, and NFκB in liver tissues. HSYA was also protective in a dual thrombotic and liver toxicity zebrafish model. By UHPLC-MS, HSYA accelerated the excretion of APAP. CONCLUSION HSYA and C are the bioactive constituents of Safflower that are responsible for the herbal drug's traditional use in promoting blood circulation to remove blood stasis. Safflower and its chalcone constituents may protect from damage due to exogenous or disease-induced endogenous toxins by enhancing the excretion velocity of toxins.
Collapse
Affiliation(s)
- Li-Wei Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue-Ying Cui
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiang-Feng He
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Shen Duan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chun-Rui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Cheng-Bin Shan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chao-Mei Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
16
|
Bioactive Substances in Safflower Flowers and Their Applicability in Medicine and Health-Promoting Foods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6657639. [PMID: 34136564 PMCID: PMC8175185 DOI: 10.1155/2021/6657639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Safflower flowers (Carthamus tinctorius) contain many natural substances with a wide range of economic uses. The most famous dye isolated from flower petals is hydroxysafflor A (HSYA), which has antibacterial, anti-inflammatory, and antioxidant properties. This review is aimed at updating the state of knowledge about their applicability in oncology, pulmonology, cardiology, gynecology, dermatology, gastrology, immunology, and suitability in the treatment of obesity and diabetes and its consequences with information published mainly in 2018-2020. They were also effective in treating obesity and diabetes and its consequences. The issues related to the possibilities of using HSYA in the production of health-promoting food were also analyzed.
Collapse
|
17
|
Chen M, Li X. Role of TRPV4 channel in vasodilation and neovascularization. Microcirculation 2021; 28:e12703. [PMID: 33971061 DOI: 10.1111/micc.12703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable nonselective cation channel, is widely distributed in the circulatory system, particularly in vascular endothelial cells (ECs) and smooth muscle cells (SMCs). The TRPV4 channel is activated by various endogenous and exogenous stimuli, including shear stress, low intravascular pressure, and arachidonic acid. TRPV4 has a role in mediating vascular tone and arterial blood pressure. The activation of the TRPV4 channel induces Ca2+ influx, thereby resulting in endothelium-dependent hyperpolarization and SMC relaxation through SKCa and IKCa activation on ECs or through BKCa activation on SMCs. Ca2+ binds to calmodulin, which leads to the production of nitric oxide, causing vasodilation. Furthermore, the TRPV4 channel plays an important role in angiogenesis and arteriogenesis and is critical for tumor angiogenesis and growth, since it promotes or inhibits the development of various types of cancer. The TRPV4 channel is involved in the active growth of collateral arteries induced by flow shear stress, which makes it a promising therapeutic target in the occlusion or stenosis of the main arteries. In this review, we explore the role and the potential mechanism of action of the TRPV4 channel in the regulation of vascular tone and in the induction of neovascularization to provide a reference for future research.
Collapse
Affiliation(s)
- Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Liu L, Guo M, Lv X, Wang Z, Yang J, Li Y, Yu F, Wen X, Feng L, Zhou T. Role of Transient Receptor Potential Vanilloid 4 in Vascular Function. Front Mol Biosci 2021; 8:677661. [PMID: 33981725 PMCID: PMC8107436 DOI: 10.3389/fmolb.2021.677661] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed in systemic tissues and can be activated by many stimuli. TRPV4, a Ca2+-permeable cation channel, plays an important role in the vasculature and is implicated in the regulation of cardiovascular homeostasis processes such as blood pressure, vascular remodeling, and pulmonary hypertension and edema. Within the vasculature, TRPV4 channels are expressed in smooth muscle cells, endothelial cells, and perivascular nerves. The activation of endothelial TRPV4 contributes to vasodilation involving nitric oxide, prostacyclin, and endothelial-derived hyperpolarizing factor pathways. TRPV4 activation also can directly cause vascular smooth muscle cell hyperpolarization and vasodilation. In addition, TRPV4 activation can evoke constriction in some specific vascular beds or under some pathological conditions. TRPV4 participates in the control of vascular permeability and vascular damage, particularly in the lung capillary endothelial barrier and lung injury. It also participates in vascular remodeling regulation mainly by controlling vasculogenesis and arteriogenesis. This review examines the role of TRPV4 in vascular function, particularly in vascular dilation and constriction, vascular permeability, vascular remodeling, and vascular damage, along with possible mechanisms, and discusses the possibility of targeting TRPV4 for therapy.
Collapse
Affiliation(s)
- Liangliang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mengting Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaowang Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiwei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jigang Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanting Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Dong Z, Dai H, Feng Z, Liu W, Gao Y, Liu F, Zhang Z, Zhang N, Dong X, Zhao Q, Zhou X, Du J, Liu B. Mechanism of herbal medicine on hypertensive nephropathy (Review). Mol Med Rep 2021; 23:234. [PMID: 33537809 PMCID: PMC7893801 DOI: 10.3892/mmr.2021.11873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephropathy is the most common complication of hypertension, and is one of the main causes of end-stage renal disease (ESRD) in numerous countries. The basic pathological feature of hypertensive nephropathy is arteriolosclerosis followed by renal parenchymal damage. The etiology of this disease is complex, and its pathogenesis is mainly associated with renal hemodynamic changes and vascular remodeling. Despite the increased knowledge on the pathogenesis of hypertensive nephropathy, the current clinical treatment methods are still not effective in preventing the development of the disease to ESRD. Herbal medicine, which is used to relieve symptoms, can improve hypertensive nephropathy through multiple targets. Since there are few clinical studies on the treatment of hypertensive nephropathy with herbal medicine, this article aims to review the progress on the basic research on the treatment of hypertensive nephropathy with herbal medicine, including regulation of the renin angiotensin system, inhibition of sympathetic excitation, antioxidant stress and anti-inflammatory protection of endothelial cells, and improvement of obesity-associated factors. Herbal medicine with different components plays a synergistic and multi-target role in the treatment of hypertensive nephropathy. The description of the mechanism of herbal medicine in the treatment of hypertensive nephropathy will contribute towards the progress of modern medicine.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, P.R. China
| | - Zhandong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zihan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
20
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|