1
|
Wang Y, Yan QJ, Hu E, Wu Y, Ding RQ, Chen Q, Cheng MH, Yang XY, Tang T, Li T. Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine. Chin J Integr Med 2025:10.1007/s11655-025-4200-7. [PMID: 39776039 DOI: 10.1007/s11655-025-4200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments. METHODS Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg). The administration was performed by intragastric administration for 3 days. Neurological functions tests, histology staining, coagulation and haemorheology assays, and Western blot were examined. Untargeted metabolomics was employed to identify metabolites. The key metabolite was validated by enzyme-linked immunosorbent assay and immunofluorescence. RESULTS XFZYD significantly alleviated neurological dysfunction in CCI model rats (P<0.01) but had no impact on coagulation function. As evidenced by Evans blue and IgG staining, XFZYD effectively prevented blood-brain barrier (BBB) disruption (P<0.05, P<0.01). Moreover, XFZYD not only increased the expression of collagen IV, occludin and zona occludens 1 but also decreased matrix metalloproteinase-9 (MMP-9) and cyclooxygenase-2 (COX-2), which protected BBB integrity (all P<0.05). Nine potential metabolites were identified, and all of them were reversed by XFZYD. Adenosine was the most significantly altered metabolite related to BBB repair. XFZYD significantly reduced the level of equilibrative nucleoside transporter 2 (ENT2) and increased adenosine (P<0.01), which may improve BBB integrity. CONCLUSIONS XFZYD ameliorates BBB disruption after TBI by decreasing the levels of MMP-9 and COX-2. Through further exploration via metabolomics, we found that XFZYD may exert a protective effect on BBB by regulating adenosine metabolism via ENT2.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi, Nanchang, 330004, China
| | - Qiu-Ju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi, Nanchang, 330004, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruo-Qi Ding
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meng-Han Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi-Ya Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi, Nanchang, 330004, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi, Nanchang, 330004, China.
| |
Collapse
|
2
|
Liu H, Huang W, Ding Q, Huang Y, Lai Z, Liu Z, Li S, Peng X, Wu Z, Deng L, Huang Y, Chen J. Scalp acupuncture alleviates remote hippocampal damage in MCAO rats by inhibiting neuroinflammation: A TMT-based proteomics analysis. Neuroscience 2024; 563:117-128. [PMID: 39521322 DOI: 10.1016/j.neuroscience.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
While mounting evidence suggests that scalp acupuncture (SA) may be effective in alleviating neurological deficits in patients with acute ischemic stroke (IS), its effect on remote hippocampal damage in acute IS and the underlying mechanisms remain elusive. Thus, proteomics analysis was conducted to identify potential targets of SA therapy in acute IS. SA significantly reduced cerebral infarct volume and attenuated neuronal damage in the ischemic penumbra and hippocampus, as well as alleviated neurological deficits in rats with middle cerebral artery occlusion (MCAO). Moreover, 74 upregulated and 50 downregulated proteins were identified in the MCAO group compared to the sham group, whilst 52 up-regulated and 50 down-regulated proteins were identified in the SA group compared to the MCAO group. Bioinformatics analysis indicated that SA may exert neuroprotective effects by modulating the acute inflammatory response and microglial activation. Additionally, SA down-regulated the expression levels of Iba-1, TNF-α, IL-1β, and IL-6, while up-regulating those of IL-4 and IL-10. Likewise, it downregulated the expression levels of three key proteins identified via proteomics analysis (Kng1, Brd9, and Magl) that may mediate the anti-inflammatory effects of SA. Overall, these results indicate that SA attenuates neuronal damage in the hippocampus and ischemic penumbra and ameliorates neurological deficits. Proteomic analysis suggested that this effect is related to the modulation of the acute inflammatory response. SA attenuated remote hippocampal damage after IS by inhibiting microglia activation and neuroinflammation. Lastly, Kng1, Brd9, and Magl were identified as potential targets that mediate the anti-inflammatory effects of SA.
Collapse
Affiliation(s)
- Huacong Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Weijia Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qian Ding
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China; Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, China
| | - Yumeng Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoxing Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaoxiong Li
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinyi Peng
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenhong Wu
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liangbin Deng
- Guangzhou Zengcheng District Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Junqi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Li T, Zhang L, Cheng M, Hu E, Yan Q, Wu Y, Luo W, Su H, Yu Z, Guo X, Chen Q, Zheng F, Li H, Zhang W, Tang T, Luo J, Wang Y. Metabolomics integrated with network pharmacology of blood-entry constituents reveals the bioactive component of Xuefu Zhuyu decoction and its angiogenic effects in treating traumatic brain injury. Chin Med 2024; 19:131. [PMID: 39327620 PMCID: PMC11425933 DOI: 10.1186/s13020-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) has been extensively utilized to treat traumatic brain injury (TBI). However, the bioactive compounds and the underlying mechanisms have not yet been elucidated. OBJECTIVES This study aimed to investigate the bioactive constituents of XFYZD that are absorbed in the blood and the mechanisms in treating TBI. METHODS The study presents an integrated strategy in three steps to investigate the material basis and pharmacological mechanisms of XFZYD. The first step involves: (1) performing metabolomics analysis of XFZYD to obtain the main functions and targets; (2) screening the blood-entry ingredients and targets of XFZYD from databases; (3) obtaining the potential components targeting the key functions by integrated analysis of metabolomics and network pharmacology. The second step involves screening pharmacological effects with active ingredients in vitro. In the third step, the effects of the top active compound were validated in vivo, and the mechanisms were explored by protein antagonist experiments. RESULTS Metabolomics analysis revealed that XFZYD treated TBI mice mainly through affecting the functions of blood vessels. We screened 62 blood-entry ingredients of XFZYD by network pharmacology. Then, we focused on 39 blood-entry ingredients related to vascular genes enriched by XFZYD-responsive metabolites. Performing the natural products library, we verified that hydroxysafflor yellow A (HSYA), vanillin, ligustilide, paeoniflorin, and other substances promoted endothelial cell proliferation significantly compared to the control group. Among them, the efficacy of HSYA was superior. Further animal studies demonstrated that HSYA treatment alleviated neurological dysfunction in TBI mice by mNSS and foot fault test, and decreased neuronal damage by HE, nissl, and TUNEL staining. HSYA increased the density of cerebral microvessels, raised the expression of angiogenesis marker proteins VEGFA and CD34, and activated the PI3K/Akt/mTOR signaling pathway significantly. The angiogenic effects disappeared after the intervention of PI3K antagonist LY294002. CONCLUSION By applying a novel strategy of integrating network pharmacology of constituents absorbed in blood with metabolomics, the research screened HSYA as one of the top bioactive constituents of XFZYD, which stimulates angiogenesis by activating the PI3K/Akt/mTOR signaling pathway after TBI.
Collapse
Affiliation(s)
- Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Su
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xin Guo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan, People's Republic of China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
4
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
6
|
Mu W, Duan C, Ao J, Du F, Zhang J. TMT-based proteomics analysis of the blood enriching mechanism of the total Tannins of Gei Herba in mice. Heliyon 2024; 10:e33212. [PMID: 39021933 PMCID: PMC11253055 DOI: 10.1016/j.heliyon.2024.e33212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Lanbuzheng (LBZ) is the traditional seedling medicine in Guizhou, which has the effect of tonifying blood. It has been found that the main active ingredient is tannin, however, the blood-replenishing effect of tannin and its mechanism are still unclear. The study was to explore the mechanisms underlying the therapeutic effects of the total Tannins of Lanbuzheng (LBZT) against anemia in mice. Anemia mice was induced by cyclophosphamide, the effect of LBZT against anemia was determined by analyzing peripheral blood and evaluating organs indexes. Tandem mass tag (TMT)-based quantitative proteomics technology coupled with bioinformatics analysis was then used to identify differentially expressed proteins (DEPs) in spleen. Compared to the model, number of RBCs, PLTs and WBCs, HCT ratio and HGB content were increased, the indexes of thymus, spleen and liver were also increased, after LBZT intervention. A total of 377 DEPs were identified in LBZT group, of which 206 DEPs were significantly up-regulated and 171 DEPs were significantly down-regulated. Bioinformatics analysis showed that hematopoietic function has been restored by activating the complement and coagulation cascade signaling pathways. Results suggest that LBZT exerts it therapeutic effects against anemia by regulating complement and coagulation cascade signaling pathways and provides scientific basis for further mechanistic studies for LBZT.
Collapse
Affiliation(s)
- Wenbi Mu
- Zunyi Product Quality Inspection and Testing Institute, Zunyi, 563000, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Fanpan Du
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
7
|
Xiang P, Li Q, Cui G, Xu N, Xiao Q, Qu X, Zhang Y, Chen Y, Wei X, Wang Q, Zhong R, Liu K, Liu C, Zhu F. Investigating the mechanism and efficacy material basis of Xiehuo Xiaoying decoction for treating Graves' disease via thyroid cell apoptosis based on proteomics and molecular docking techniques. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117753. [PMID: 38218499 DOI: 10.1016/j.jep.2024.117753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For numerous years, the Xiehuo Xiaoying decoction (XHXY), a traditional Chinese medicine formula, has demonstrated substantial promise in treating Graves' disease (GD) in clinical settings, showcasing significant potential. However, the therapeutic mechanism and efficacy material basis of XHXY remains obscure. AIM OF THE STUDY This work aims to investigate the underlying mechanisms and to study the efficacy material basis of XHXY in anti-GD effect using a combination of TMT quantitative proteomics and molecular docking method. MATERIALS AND METHODS GD model was initiated by administering Ad-TSH289. Subsequently, the mice underwent a four-week regimen that included oral gavage of XHXY at doses of 17 g/kg·d and 34 g/kg·d, along with intraperitoneal injections of Gentiopicroside (GPS). Utilizing the principles of pharmacological chemistry in traditional Chinese medicine, we employed high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS) to discern prescribed prototype composition of XHXY in serum samples from mouse. TMT proteomics research provided evidence of XHXY's putative targets and important pathways in vivo. The binding activity of probable action targets and prototype composition was detected by molecular docking. Finally, Immunohistochemistry (IHC) and TUNEL staining were used to verify the mechanism of XHXY and GPS in anti-GD. RESULTS XHXY and GPS alleviated GD by ameliorating the pathological changes and reducing thyroxine and TRAb levels. In mouse serum, a total of 31 prototypical XHXY ingredients were detected, and the majority of these components were from monarch and minister medicine. Proteomics study results indicated that the XHXY may mainly regulate targets including FAS-associated death domain protein (FADD), Apolipoprotein C-III, etc. and main pathways are Apoptosis, Cholesterol metabolism, TNF signalling pathway, etc. Strong binding activity of the prototypical active ingredient and GPS towards FADD, Caspase 8, and Caspase 3 was demonstrated by molecular docking. XHXY and its primary component, GPS, elevated the expression of FADD, Caspase 8, and Caspase 3, and enhance apoptosis in thyroid cells, as lastly validated by TUNEL and IHC staining. CONCLUSIONS XHXY exhibits a favorable therapeutic effect in treating GD by promoting apoptosis in thyroid cells through the upregulation of FADD, Caspase 8, and Caspase 3 expression. And GPS is the main efficacy material basis for its therapeutic effect in anti-GD.
Collapse
Affiliation(s)
- Pingping Xiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Qinning Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Guoqian Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Nan Xu
- Department of Traditional Chinese Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, China; Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyang Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yunnan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yu Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiao Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Qifeng Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ronglin Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Kemian Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Chao Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
8
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
9
|
Zhang L, Li Q, Su Y, Zhang X, Qu J, Liao D, Zou Q, Zou H, Liu X, Li C, He J. Proteomic profiling analysis of human endometrium in women with unexplained recurrent spontaneous abortion. J Proteomics 2023; 288:104996. [PMID: 37657719 DOI: 10.1016/j.jprot.2023.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Unexplained recurrent spontaneous abortion (URSA) seriously affects female reproductive health, causing a great burden to patients both physically and mentally. Endometrial decidualization plays an important role in pregnancy, and impaired decidualization is an essential cause of URSA, but the cause of the damage is still poorly understood. This study aimed to reveal the pathogenesis of URSA by analyzing the differential protein expression profiles in the decidual tissue of patients with recurrent abortion compared to those with normal pregnancy. Morphological analysis revealed abnormal decidualization of endometrial tissue in patients with URSA. Quantitative proteomics analysis showed that a total of 146 differentially expressed proteins were identified between the two groups, among which 95 proteins were downregulated and 51 proteins were upregulated. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the protein expression profile and signaling pathways of endometrium in patients with URSA changed significantly, and cytoskeleton remodeling and morphological transformation disorders were associated with abortion induced by incomplete decidualization. Meanwhile, transcription factors analysis showed that the 3 most affected families were zf-C2H2, MYB and HMG. Therefore, our study may provide a basis for searching for potential markers of decidualization injury. SIGNIFICANCE: At present, there are still about 50% of RSA patients with unknown causes, which brings great difficulties and blindness to clinical diagnosis and treatment.The limited proteomic studies on URSA further contribute to the lack of understanding in this field. However, in this study, the focus was on proteomic profiling analysis of the human endometrium in URSA patients compared to normal women. The findings revealed that cytoskeletal remodeling disorder is a significant contributor to the failure of decidualization in URSA patients. This insight highlights the potential role of cytoskeleton-related proteins in the pathogenesis of URSA, providing valuable information for further research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qian Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yan Su
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xinyuan Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jialin Qu
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Dan Liao
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qin Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Hua Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaoli Liu
- Department of Family Planning, Chongqing Health Center for Women and Children, Chongqing, PR China.
| | - Chunli Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Li Z, Quan B, Li X, Xiong W, Peng Z, Liu J, Wang Y. A proteomic and phosphoproteomic landscape of spinal cord injury. Neurosci Lett 2023; 814:137449. [PMID: 37597742 DOI: 10.1016/j.neulet.2023.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Spinal cord injury (SCI) is a devastating trauma of the central nervous system, with high levels of morbidity, disability, and mortality. To explore the underlying mechanism of SCI, we analyzed the proteome and phosphoproteome of rats at one week after SCI. We identified 465 up-regulated and 129 down-regulated differentially expressed proteins (DEPs), as well as 184 up-regulated and 40 down-regulated differentially expressed phosphoproteins (DEPPs). Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we identified the biological characteristics of these proteins from the perspectives of cell component, biological process, and molecular function. We also found a lot of enriched functional pathways such as GABAergic synapse pathway, ErbB signaling pathway, tight junction, adherens junction. The integrated analysis of proteomics and phosphoproteomics yielded 22 differently expressed co-identified proteins of DEPs and DEPPs, which revealed strongly correlative patterns. These findings may help clarify the potential mechanisms of trauma and repair in SCI and may guide the development of novel treatments.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Bingxuan Quan
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiuyan Li
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Limin Hospital of Weihai High District, Weihai, China
| | - Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingsong Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
11
|
Xu Y, Yang L, Teng Y, Li J, Li N. Exploring the underlying molecular mechanism of tri(1,3-dichloropropyl) phosphate-induced neurodevelopmental toxicity via thyroid hormone disruption in zebrafish by multi-omics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106510. [PMID: 37003012 DOI: 10.1016/j.aquatox.2023.106510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Tri(1,3-dichloropropyl) phosphate (TDCPP) is widespread in the environment as a typical thyroid hormone-disrupting chemical. Here, we aimed to explore the toxicological mechanisms of the thyroid hormone-disrupting effects induced by TDCPP in zebrafish embryos/larvae using multi-omics analysis. The results showed that TDCPP (400 and 600 µg/L) induced phenotypic alteration and thyroid hormone imbalance in zebrafish larvae. It resulted in behavioral abnormalities during zebrafish embryonic development, suggesting that this chemical might exhibit neurodevelopmental toxicity. Transcriptomic and proteomic analysis provided consistent evidence at the gene and protein levels that neurodevelopmental disorders were significantly enhanced by TDCPP exposure (p < 0.05). Additionally, multi-omics data indicated that membrane thyroid hormone receptor (mTR)-mediated non-genomic pathways, including cell communication (ECM-receptor interactions, focal adhesion, etc.) and signal transduction pathways (MAPK signaling pathway, calcium signaling pathway, neuroactive ligand-receptor interaction pathway, etc.), were significantly disturbed (p < 0.05) and might contribute to the neurodevelopmental toxicity induced by TDCPP. Therefore, behavioral abnormalities and neurodevelopmental disorders might be important phenotypic characteristics of TDCPP-induced thyroid hormone disruption, and mTR-mediated non-genomic networks might participate in the disruptive effects of this chemical. This study provides new insights into the toxicological mechanisms of TDCPP-induced thyroid hormone disruption and proposes a theoretical basis for risk management of this chemical.
Collapse
Affiliation(s)
- Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Xu XJ, Liu BY, Dong JQ, Ge QQ, Lu SH, Yang MS, Zhuang Y, Zhang B, Niu F. Tandem Mass Tag-based proteomics analysis reveals the vital role of inflammation in traumatic brain injury in a mouse model. Neural Regen Res 2023. [PMID: 35799536 PMCID: PMC9241417 DOI: 10.4103/1673-5374.343886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Zhu XM, Tan Y, Shi YH, Li Q, Zhu J, Liu XD, Tong QZ. TMT-based quantitative proteomics analysis of the effects of Jiawei Danshen decoction myocardial ischemia-reperfusion injury. Proteome Sci 2022; 20:17. [PMID: 36517846 PMCID: PMC9749149 DOI: 10.1186/s12953-022-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Every year, approximately 17 million people worldwide die due to coronary heart disease, with China ranking second in terms of the death toll. Myocardial ischemia-reperfusion injury (MIRI) significantly influences cardiac function and prognosis in cardiac surgery patients. Jiawei Danshen Decoction (JWDSD) is a traditional Chinese herbal prescription that has been used clinically for many years in China to treat MIRI. The underlying molecular mechanisms, however, remain unknown. To investigate the proteomic changes in myocardial tissue of rats given JWDSD for MIRI therapy-based proteomics. METHODS MIRI rat model was created by ligating/releasing the left anterior descending coronary artery. For seven days, the drugs were administered twice daily. The model was created following the last drug administration. JWDSD's efficacy in improving MIRI was evaluated using biochemical markers and cardiac histology. Tandem mass tag-based quantitative proteomics (TMT) technology was also used to detect proteins in the extracted heart tissue. To analyze differentially expressed proteins (DEPs), bioinformatics analysis, including gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways, were employed. Furthermore, western blotting confirmed the potential targets regulated by JWDSD. RESULTS The histopathologic characteristics and biochemical data showed JWDSD's protective effects on MIRI rats. A total of 4549 proteins were identified with FDR (false discovery rate) ≤1%. Twenty overlapping were identified (162 DEPs and 45 DEPs in Model/Control or JWDSD/Model group, respectively). Of these DEPs, 16 were regulated by JWDSD. GO analysis provided a summary of the deregulated protein expression in the categories of biological process (BP), cell component (CC), and molecular function (MF). KEGG enrichment analysis revealed that the signaling pathways of neutrophil extracellular trap formation, RNA polymerase, serotonergic synapse, and linoleic acid metabolism are all closely related to JWDSD effects in MIRI rats. Furthermore, T-cell lymphoma invasion and metastasis 1 (TIAM1) was validated using western blotting, and the results were consistent with proteomics data. CONCLUSIONS Our study suggests that JWDSD may exert therapeutic effects through multi-pathways regulation in MIRI treatment. This work may provide proteomics clues for continuing research on JWDSD in treating MIRI.
Collapse
Affiliation(s)
- Xiang-Mei Zhu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,grid.67293.39The Second Hospital of Hunan University of Chinese Medicine, Caie North Road, Number 233, Changsha, Hunan 410005, People’s Republic of China
| | - Yang Tan
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Yu-He Shi
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Qing Li
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Jue Zhu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Xiang-Dan Liu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,Key Laboratory of Germplasm Resources and Standardized Planting of Bulk Authentic Medicinal Materials from Hunan, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Qiao-Zhen Tong
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,Key Laboratory of Germplasm Resources and Standardized Planting of Bulk Authentic Medicinal Materials from Hunan, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| |
Collapse
|
14
|
Analysis of the Clinical Efficacy and Molecular Mechanism of Xuefu Zhuyu Decoction in the Treatment of COPD Based on Meta-Analysis and Network Pharmacology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2615580. [PMID: 36479314 PMCID: PMC9720234 DOI: 10.1155/2022/2615580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is becoming a major public health burden worldwide. It is urgent to explore more effective and safer treatment strategy for COPD. Notably, Xuefu Zhuyu Decoction (XFZYD) is widely used to treat respiratory system diseases, including COPD, in China. Objective This study is aimed at comprehensively evaluating the therapeutic effects and molecular mechanism of XFZYD on COPD. Methods Original clinical studies were searched from eight literature databases. Meta-analysis was conducted using the Review Manager software (version 5.4.1). Network pharmacology and molecular docking experiments were utilized to explore the mechanisms of action of XFZYD. Results XFZYD significantly enhanced the efficacy of clinical treatment and improved the pulmonary function and hypoventilation of COPD patients. In addition, XFZYD significantly improved the hypercoagulability of COPD patients. The subgroup analysis suggested that XFZYD exhibited therapeutic effects on both stable and acute exacerbation of COPD. XFZYD exerted its therapeutic effects on COPD through multicomponent, multitarget, and multipathway characteristics. The intervention of the PI3K-AKT pathway may be the critical mechanism. Conclusion The application of XFZYD based on symptomatic relief and supportive treatment is a promising clinical decision. More preclinical and clinical studies are still needed to evaluate the safety and therapeutic effects of long-term use of XFZYD on COPD.
Collapse
|
15
|
Sabirov D, Ogurcov S, Baichurina I, Blatt N, Rizvanov A, Mukhamedshina Y. Molecular diagnostics in neurotrauma: Are there reliable biomarkers and effective methods for their detection? Front Mol Biosci 2022; 9:1017916. [PMID: 36250009 PMCID: PMC9557129 DOI: 10.3389/fmolb.2022.1017916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
To date, a large number of studies are being carried out in the field of neurotrauma, researchers not only establish the molecular mechanisms of the course of the disorders, but are also involved in the search for effective biomarkers for early prediction of the outcome and therapeutic intervention. Particular attention is paid to traumatic brain injury and spinal cord injury, due to the complex cascade of reactions in primary and secondary injury that affect pathophysiological processes and regenerative potential of the central nervous system. Despite a wide range of methods available methods to study biomarkers that correlate with the severity and degree of recovery in traumatic brain injury and spinal cord injury, development of reliable test systems for clinical use continues. In this review, we evaluate the results of recent studies looking for various molecules acting as biomarkers in the abovementioned neurotrauma. We also summarize the current knowledge of new methods for studying biological molecules, analyzing their sensitivity and limitations, as well as reproducibility of results. In this review, we also highlight the importance of developing reliable and reproducible protocols to identify diagnostic and prognostic biomolecules.
Collapse
Affiliation(s)
- Davran Sabirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, Kazan, Russia
| | - Irina Baichurina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Irina Baichurina,
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
16
|
Kang S, Bo Y, Yang D, Wu G, Yang X, Wei J, Zhao G, An M, Zhao L. Tandem mass tag-based proteomics analysis reveals the effects of Guri Gumu-13 pill on drug-induced liver injury. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1206:123353. [DOI: 10.1016/j.jchromb.2022.123353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 10/25/2022]
|
17
|
Yang ZY, Tang T, Li PF, Li XX, Wu Y, Feng DD, Hu MR, Dai F, Zheng F, Zhang W, Wang Y. Systematic analysis of tRNA-derived small RNAs reveals therapeutic targets of Xuefu Zhuyu decoction in the cortexes of experimental traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154168. [PMID: 35623157 DOI: 10.1016/j.phymed.2022.154168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xuefu Zhuyu Decoction (XFZYD), a well-known traditional Chinese medicine prescription, has been widely used to treat traumatic brain injury (TBI). However, the underlying mechanisms involved in XFZYD therapy remain unclear. AIM OF THE STUDY We explored new therapeutic targets of XFZYD in TBI by the tsRNA-sequencing (tsRNA-seq) method. MATERIAL AND METHODS High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to assess the quality of XFZYD. Male Sprague-Dawley rats were randomly categorized into three groups: sham, TBI, and XFZYD. The protective effects of XFZYD were investigated in vivo by using the Morris water maze (MWM), modified neurological severity score (mNSS) tests, hematoxylin-eosin (H&E) staining, and Nissl staining. tsRNA-seq was applied to analyze the expression of tsRNAs in the rat cortex. Four tsRNAs were validated by qRT-PCR. The biological function of putative tsRNAs was investigated using bioinformatics techniques. The functions of tsRNAs targeting mRNAs were verified in vitro. RESULTS The mNSS and MWM indicated that XFZYD notably improved neurological deficits and cognitive function after TBI (p < 0.05). H&E staining and Nissl staining demonstrated that XFZYD suppressed damage and neuronal loss in the TBI rat cortex. We evaluated the dysregulated expression of 732 tsRNAs (128 tsRNAs were significantly altered in the TBI/sham group (fold change > 2 and p < 0.05), and 97 tsRNAs were dysregulated in the XFZYD/TBI group (fold change > 2 and p < 0.05)) in the TBI rat cortex. Interestingly, 41 tsRNAs were distinctly regulated by XFZYD. The qRT-PCR results of the four randomly chosen tsRNAs (tRF-54-75-Glu-TTC-2, tRF-55-75-Gln-CTG-2-M2, tRF-55-76-Val-TAC-1, tRF-64-85-Leu-AAG-1-M4) exhibited trends similar to those of the tsRNA-seq data. We certified the possible targets of tsRNAs and suggested the crosscurrent in the expression trend of the target genes. Bioinformatics analysis showed that XFZYD-related tsRNAs could contribute to regulating insulin resistance, the calcium signaling pathway, autophagy, and axon guidance. CONCLUSIONS The current research implies that tsRNAs are putative therapeutic targets of XFYZD for TBI treatment. This research provides new insight into the therapeutic targets of XFZYD in treating TBI.
Collapse
Affiliation(s)
- Zhao-Yu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xue-Xuan Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan-Dan Feng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ming-Rui Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Feng Dai
- Emergency Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
18
|
Li J, Xu Y, Li N, Zuo R, Zhai Y, Chen H. Thyroid Hormone Disruption by Organophosphate Esters Is Mediated by Nuclear/Membrane Thyroid Hormone Receptors: In Vitro, In Vivo, and In Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4241-4250. [PMID: 35262344 DOI: 10.1021/acs.est.1c05956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Earlier mechanistic studies of many prohibited flame retardants (FRs) highlighted their thyroid hormone-disrupting activity through nuclear thyroid hormone receptors (nTRs), whereas some alternative FRs such as organophosphate esters (OPEs) exerted weak nTR-disrupting effects. However, an increasing number of studies have revealed that OPEs also exert thyroid hormone-disrupting effects, and the underlying mechanism is unclear. Herein, the thyroid hormone-disrupting effects and mechanisms of 8 typical OPEs were investigated using integrated in vitro, in vivo, and in silico assays. All tested chemicals competitively bound to the membrane thyroid hormone receptor (mTR) [the 20% relative inhibitory concentration (RIC20): (3.5 ± 0.2) × 101 to (4.9 ± 1.0) × 107 nM], and Cl-OPEs and alkyl-OPEs had lower RIC20 values. In contrast, only 4 OPEs showed nTR antagonistic activities at higher concentrations [≥ (4.8 ± 0.8) × 103 nM]. Cl-OPEs and alkyl-OPEs preferentially interacted with mTR. Molecular docking illustrated that OPEs docked into mTRs, consistent with the competitive binding assay. In vivo analyses of zebrafish embryonic development confirmed that tris(1,3-dichloro-2-propyl) phosphate induced inappropriate expression of proteins, and these protein interactions might be associated with mTR according to the quantitative proteomic analysis. Based on the results, mTR might play a critical role in mediating the thyroid hormone-disrupting effects of OPEs.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Zhu X, Li T, Hu E, Duan L, Zhang C, Wang Y, Tang T, Yang Z, Fan R. Proteomics Study Reveals the Anti-Depressive Mechanisms and the Compatibility Advantage of Chaihu-Shugan-San in a Rat Model of Chronic Unpredictable Mild Stress. Front Pharmacol 2022; 12:791097. [PMID: 35111057 PMCID: PMC8802092 DOI: 10.3389/fphar.2021.791097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Chaihu-Shugan-San is a classical prescription to treat depression. According to the traditional Chinese medicine (TCM) principle, the 2 decomposed recipes in Chaihu-Shugan-San exert synergistic effects, including Shu Gan (stagnated Gan-Qi dispersion) and Rou Gan (Gan nourishment to alleviate pain). However, the specific mechanism of Chaihu-Shugan-San on depression and its compatibility rule remain to be explored. Objective: We aimed to explore the anti-depression mechanisms and analyze the advantage of TCM compatibility of Chaihu-Shugan-San. Methods: The chronic unpredictable mild stress (CUMS) rat model was established. Antidepressant effects were evaluated by sucrose preference test (SPT), and forced swimming test (FST). Tandem Mass Tag (TMT)-based quantitative proteomics of the hippocampus was used to obtain differentially expressed proteins (DEPs). Bioinformatics analysis including Gene Ontology (GO), pathway enrichment, and protein-protein interaction (PPI) networks was utilized to study the DEPs connections. At last, the achieved key targets were verified by western blotting. Results: Chaihu-Shugan-San increased weight gain and food intake, as well as exhibited better therapeutic effects including enhanced sucrose preference and extended immobility time when compared with its decomposed recipes. Proteomics showed Chaihu-Shugan-San, Shu Gan, and Rou Gan regulated 110, 12, and 407 DEPs, respectively. Compared with Shu Gan or Rou Gan alone, the expression of 22 proteins was additionally changed by Chaihu-Shugan-San treatment, whereas the expression of 323 proteins whose expression was changed by Shu Gan or Rou Gan alone were not changed by Chaihu-Shugan-San treatment. Bioinformatics analysis demonstrated that Chaihu-Shugan-San affected neurotransmitter’s release and transmission cycle (e.g., γ-aminobutyric acid (GABA), glutamate, serotonin, norepinephrine, dopamine, and acetylcholine). GABA release pathway is also targeted by the 22 DEPs. Unexpectedly, only 2 pathways were enriched by the 323 DEPs: Metabolism and Cellular responses to external stimuli. Lastly, the expression of Gad2, Vamp2, and Pde2a was verified by western blotting. Conclusions: Chaihu-Shugan-San treats depression via multiple targets and pathways, which may include regulations of 110 DEPs and some neurotransmitter’s transmission cycle. Compared with Shu Gan and Rou Gan, the 22 Chaihu-Shugan-San advanced proteins and the affected GABA pathway may be the advantages of Chaihu-Shugan-San compatibility. This research offers data and theory support for the clinical application of Chaihu-Shugan-San.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Duan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Fan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Wang G, Li M, Yu S, Guan M, Ma S, Zhong Z, Guo Y, Leng X, Huang H. Tandem mass tag-based proteomics analysis of type 2 diabetes mellitus with non-alcoholic fatty liver disease in mice treated with acupuncture. Biosci Rep 2022; 42:BSR20212248. [PMID: 34981123 PMCID: PMC8762347 DOI: 10.1042/bsr20212248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To explore the proteomics profiles of hepatocytes of mice treated with acupuncture for type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD). METHODS We used a Tandem mass tag (TMT)-based quantitative proteomics approach to identify proteins with potential molecular mechanisms associated with acupuncture interventions for T2DM with NAFLD. RESULTS Acupuncture effectively improved body weight, blood glucose, and insulin levels in T2DM with NAFLD mouse models and reversed steatosis within hepatocytes. Quantitative TMT-based proteomics analysis identified a total of 4710 quantifiable proteins and 1226 differentially expressed proteins (DEPs) in the model control group (MCG) compared with the normal control group (NCG). The Acupuncture Treatment Group (ATG) presented in 122 DEPs was compared with the MCG group. We performed a bioinformatics analysis, which revealed that DEPs enriched in the KEGG pathway after acupuncture treatment were mainly involved in the PPAR signaling pathway, fatty acid biosynthesis, fatty acid metabolism, fatty acid elongation, fat digestion and absorption. We used parallel reaction monitoring (PRM) technology to explore the association of aldehyde oxidase 1 (Aox1), acyl-coenzyme A thioesterase 2 (Acot2), perilipin-2 (Plin2), acetyl-CoA carboxylase 1 (Acc), NADP-dependent malic enzyme (Me1), fatty acid synthase (Fasn), ATP-citrate synthase (Acly), fatty acid-binding protein, intestinal (Fabp2) with lipid synthesis, fatty acid oxidation, and hepatocyte steatosis. CONCLUSIONS Our results show that acupuncture can regulate the protein expression of T2DM in the NAFLD mice model, and can effectively improve hepatocyte steatosis, and has potential benefits for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Guan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengyuan Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuo Yu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengqi Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yihui Guo
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
21
|
Luo W, Yang Z, Zhang W, Zhou D, Guo X, Wang S, He F, Wang Y. Quantitative Proteomics Reveals the Dynamic Pathophysiology Across Different Stages in a Rat Model of Severe Traumatic Brain Injury. Front Mol Neurosci 2022; 14:785938. [PMID: 35145378 PMCID: PMC8821658 DOI: 10.3389/fnmol.2021.785938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase. Methods Sixty Sprague Dawley (SD) rats were randomly divided into sham surgery and model groups. The severe TBI models were induced by the controlled cortical impact (CCI) method. We evaluated the neurological deficits through the modified neurological severity score (NSS). Meanwhile, H&E staining and immunofluorescence were performed to assess the injured brain tissues. The protein expressions of the hippocampus on the wounded side of CCI groups and the same side of Sham groups were analyzed by the tandem mass tag-based (TMT) quantitative proteomics on the third and fourteenth days. Then, using the gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein–protein interaction (PPI), the shared and stage-specific differentially expressed proteins (DEPs) were screened, analyzed, and visualized. Eventually, target proteins were further verified by Western blotting (WB). Results In the severe TBI, the neurological deficits always exist from the acute stage to the subacute stage, and brain parenchyma was dramatically impaired in either period. Of the significant DEPs identified, 312 were unique to the acute phase, 76 were specific to the subacute phase, and 63 were shared in both. Of the 375 DEPs between Sham-a and CCI-a, 240 and 135 proteins were up-regulated and down-regulated, respectively. Of 139 DEPs, 84 proteins were upregulated, and 55 were downregulated in the Sham-s and CCI-s. Bioinformatics analysis revealed that the differential pathophysiology across both stages. One of the most critical shared pathways is the complement and coagulation cascades. Notably, three pathways associated with gastric acid secretion, insulin secretion, and thyroid hormone synthesis were only enriched in the acute phase. Amyotrophic lateral sclerosis (ALS) was significantly enriched in the subacute stage. WB experiments confirmed the reliability of the TMT quantitative proteomics results. Conclusion Our findings highlight the same and different pathological processes in the acute and subacute phases of severe TBI at the proteomic level. The results of potential protein biomarkers might facilitate the design of novel strategies to treat TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Zhou
- Periodical Office, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohang Guo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Shunshun Wang
- Postpartum Health Care Department, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Feng He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
22
|
Yang L, Hou A, Zhang X, Zhang J, Wang S, Dong J, Zhang S, Jiang H, Kuang H. TMT‐based proteomics analysis to screen potential biomarkers of Achyranthis Bidentatae Radix for osteoporosis in rats. Biomed Chromatogr 2022; 36:e5339. [DOI: 10.1002/bmc.5339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Liu Yang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Ajiao Hou
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Xiaojuan Zhang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Jiaxu Zhang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Song Wang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Jiaojiao Dong
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Shihao Zhang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Hai Jiang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| |
Collapse
|
23
|
Yao X, Wang S, Chen Y, Sheng L, Li H, You H, Ye J, Zhang Q, Li J. Sodium houttuyfonate attenuates neurological defects after traumatic brain injury in mice via inhibiting NLRP3 inflammasomes. J Biochem Mol Toxicol 2021; 35:e22850. [PMID: 34405489 DOI: 10.1002/jbt.22850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/04/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
Sodium houttuyfonate (SH) is a chemical compound synthesized by houttuynin and sodium bisulfite. As it has antinflammatory effects, SH has been widely used to treat autoimmune diseases, including post events following traumatic brain injury (TBI). Meanwhile, NOD-like receptor with pyrin domain containing-3 (NLRP3) inflammasomes in microglia may play a central role in TBI. But to date, the intracellular mechanisms involved in the anti-inflammatory effects of SH in TBI remain unknown, especially whether regulating NLRP3. To gain an insight into this possibility, we conducted cell culture and biochemical studies on the effect of SH on NLRP3 inflammasome in microglia. The results showed that SH inhibited TLR4 and NLRP3 inflammasome activation in the microglia cell. In parallel, phosphorylation of ERK and NF-κB p65, which play a key role in NLRP3 inflammasome formation, was decreased. Intraperitoneal injection of SH into TBI mice significantly reduced the modified neurological severity score (mNSS), as well as the degree of microglia apoptosis post-controlled cortical impact (CCI). Immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction (RT-PCR) revealed that SH markedly reduced NLRP3 inflammasome activation, TLR4 activity, phosphorylation of ERK and NF-κB. Moreover, SH significantly inhibited microglia activation post-CCI, but effectively promoted the astrocyte activation and angiopoiesis. Taken together, our research provides evidence that SH attenuated neurological deficits post TBI through inhibiting NLRP3 inflammasome activation, via influencing the TLR4/NF-κB signaling pathway. These findings explain the intracellular mechanism of the anti-inflammatory activity caused by SH treatment following TBI.
Collapse
Affiliation(s)
- Xiaolong Yao
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Shengbo Wang
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Yingchun Chen
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Liuqing Sheng
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Huanhuan Li
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Huichao You
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Jianfeng Ye
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Qing Zhang
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Jun Li
- Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
24
|
Li Y, Wu Q, Hu E, Wang Y, Lu H. Quantitative Mass Spectrometry Imaging of Metabolomes and Lipidomes for Tracking Changes and Therapeutic Response in Traumatic Brain Injury Surrounding Injured Area at Chronic Phase. ACS Chem Neurosci 2021; 12:1363-1375. [PMID: 33793210 DOI: 10.1021/acschemneuro.1c00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex disease process that may contribute to temporary or permanent disability. Tracking spatial changes of lipids and metabolites in the brain helps unveil the underlying mechanisms of the disease procession and therapeutic response. Here, the liquid microjunction surface sampling technique was used for mass spectrometry imaging of both lipids and metabolites in rat models of controlled cortical impact with and without XueFu ZhuYu decoction treatment, and the work was focused on the diffuse changes outside the injured area at chronic phase (14 days after injury). Quantitative information was provided for phosphotidylcholines and cerebrosides by adding internal standards in the sampling solvent. With principal component analysis for the imaging data, the midbrain was found to be the region with the largest diffuse changes following TBI outside the injured area. In detail, several phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, and diacylglycerols were found to be significantly up-regulated particularly in midbrain and thalamus after TBI and XFZY treatment. It is associated with the reported "self-repair" mechanisms at the chronic phase of TBI activated by neuroinflammation. Several glycosphingolipids were found to be increased in most of brain regions after TBI, which was inferred to be associated with neuroinflammation and oxidative stress triggered by TBI. Moreover, different classes of small matabolites were significantly changed after TBI, including fatty acids, amino acids, and purines. All these compounds were involved in 10 metabolic pathway networks, and 6 target proteins of XFZY were found related to the impacted pathways. These results shed light on the molecular mechanisms of TBI pathologic processes and therapeutic response.
Collapse
Affiliation(s)
- Youmei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - En Hu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
25
|
Li J, Xu Y, Song Q, Zhang S, Xie L, Yang J. Transmembrane transport mechanism of n-hexadecane by Candida tropicalis: Kinetic study and proteomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111789. [PMID: 33340957 DOI: 10.1016/j.ecoenv.2020.111789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Yeasts are the most predominant petroleum hydrocarbon-degrading fungi isolated from petroleum-contaminated soil. However, information of the transmembrane transport of petroleum hydrocarbon into yeast cells is limited. The present study was designed to explore the transmembrane transport mechanisms of the typical petroleum hydrocarbon n-hexadecane in Candida tropicalis cells with petroleum hydrocarbon biodegradation potential. Yeast cells were treated with n-hexadecane in different scenarios, and the percentage of intracellular n-hexadecane and transport dynamics were investigated accordingly. The intracellular concentration of n-hexadecane increased within 15 min, and transportation was inhibited by NaN3, an ATPase inhibitor. The uptake kinetics of n-hexadecane were well fitted by the Michaelis-Menten model, and Kt values ranged from 152.49 to 194.93 mg/L. All these findings indicated that n-hexadecane might cross the yeast cells in an energy-dependent manner and exhibit an affinity with the cell transport system. Moreover, the differentially expressed membrane proteins induced by n-hexadecane were identified and quantified by tandem mass tag labeling coupled with liquid chromatography tandem mass spectrometry analysis. The proteome analysis results demonstrated that energy production and conversion accounted for a large proportion of the functional classifications of the differentially expressed proteins, providing further evidence that sufficient energy supply is essential for transmembrane transport. Protein functional analysis also suggested that differentially expressed proteins associated with transmembrane transport processes are clearly enriched in endocytosis and phagosome pathways (p < 0.05), and the analysis supported the notion that the underlying transmembrane transport mechanism might be associated with endocytosis and phagosome pathways, revealing a new mechanism of n-hexadecane internalization by Candida tropicalis.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Shurong Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Xie
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
26
|
Tang W, Dong M, Teng F, Cui J, Zhu X, Wang W, Wuniqiemu T, Qin J, Yi L, Wang S, Dong J, Wei Y. TMT-based quantitative proteomics reveals suppression of SLC3A2 and ATP1A3 expression contributes to the inhibitory role of acupuncture on airway inflammation in an OVA-induced mouse asthma model. Biomed Pharmacother 2020; 134:111001. [PMID: 33341053 DOI: 10.1016/j.biopha.2020.111001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 01/17/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease and acupuncture is frequently used in patients suffering from asthma in clinic. However, the regulatory mechanism of acupuncture treatment in asthma is not fully elucidated. We sought to investigate the effectiveness of acupuncture on asthma and the associated regulatory mechanism. An ovalbumin (OVA)-induced mouse asthma model was established and the effect of acupuncture on airway hyperresponsiveness (AHR), mucus hypersecretion and inflammation was assessed. Tandem mass tag (TMT)-based quantitative proteomics analysis of lung tissue and bioinformatics analysis were performed. Our results revealed that the OVA-induced mouse asthma model was successfully established with the significantly elevated AHR to methacholine (Mch), and acupuncture was effective in attenuation of AHR to Mch, peribronchial and perivascular inflammation and mucus production. The inflammatory cells around the airways, mucous secretion as well as levels of IgE, CCL5, CCL11, IL-17A in bronchoalveolar lavage fluid (BALF) and IL-4, IL-5 and IL-13 levels in serum were siginificantly inhibited by acupuncture. TMT-based quantitative proteomics analysis found that a total of 6078 quantifiable proteins were identified, and 564 (334 up-regulated and 230 down regulated) differentially expressed proteins (DEPs) were identified in OVA-induced asthma model group (A) versus normal control group (NC). Acupuncture treatment resulted in 667 DEPs (416 up-regulated and 251 down regulated) compared with A group, and 86 overlapping DEPs were identified in NC, A and AA groups. Among the 86 overlapping DEPs, we identified 41 DEPs regulated by acupuncture. Based on the above data, we performed a systematic bioinformatics analysis of the 41 DEPs, and results showed that these 41 DEPs were predominantly related to 4 KEGG pathways including SNARE interactions in vesicular transport, ferroptosis, endocrine and other factor-regulated calcium reabsorption, and protein digestion and absorption. DEPs of SLC3A2 and ATP1A3 expression levels were verified by immumohistochemical staining. Mice in OVA-induced asthma model group had elevated SLC3A2 and ATP1A3 expression and acupuncture had the ability to downregulate SLC3A2 and ATP1A3 protein expression. Furthermore, acupuncture reduced the MDA level and increased the GSH and SOD levels in the lung tissue. Taken together, our data suggested that acupuncture was effective in treating asthma by attenuation of AHR, mucus secretion and airway inflammation, and the mechanism was associated with regulation of ferroptosis, SLC3A2 and ATP1A3 protein expression as well as oxidative stress. Results from our experiments revealed the anti-inflammatory effect of acupuncture in OVA-induced mouse asthma model, leading to a more effective approach to be chosen by patients in clinic.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ming Dong
- Gumei community Health center of Minhang district of Shanghai, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|