1
|
Renovato-Núñez J, Cobos-Puc LE, Ascacio-Valdés JA, Rodríguez-Herrera R, Iliná A, Barrón-González MP, Sierra-Rivera CA, Silva-Belmares SY. Polyphenolic characterisation and antiprotozoal effect of extracts obtained by maceration, ultrasound, microwave and ultrasound/microwave of Porophyllum ruderale (Jacq.) Cass. Nat Prod Res 2025; 39:336-340. [PMID: 37840267 DOI: 10.1080/14786419.2023.2265532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
Porophyllum ruderale (Jacq.) Cass. (Asteraceae) has antiprotozoal properties and contains extractable phenolic compounds by the maceration method (M). However, new extraction proposals such as ultrasound (U), microwaves (MW), and ultrasound/microwaves (U/MW) have emerged to optimise yields, but it is unknown if these methods modify effectiveness. Therefore, the study consisted of extracting the aerial part of P. ruderale with ethanol using the M, U, MW and U/MW methods to study its composition by RP-HPLC-ESI-MS, its total polyphenol content and its effect against Entamoeba histolytica. The study showed that U, MW and U/MW did not modify the extraction yield compared to M, but they did change the composition and the total polyphenol content. All extracts contain phloretin, caffeic acid 4-O-glucoside, todolactol A, quercetin 3-O-glucoside, quercetin 3-O-rhamnoside, luteolin and 3,7-dimethylquercetin, and affected the growth of E. histolytica. However, M and U extracts were the most effective at 5 mg/mL.
Collapse
Affiliation(s)
| | | | | | | | - Anna Iliná
- School of Chemical Sciences, Autonomous University of Coahuila, Coahuila, Mexico
| | | | | | | |
Collapse
|
2
|
Chen L, Yao Y, Xiang K, Dai X, Li W, Dai H, Lu K, Li W, Lu H, Zhang Y, Huang H, Wang M. Spatial-temporal pattern of ecosystem services and sustainable development in representative mountainous cities: A case study of Chengdu-Chongqing Urban Agglomeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122261. [PMID: 39186853 DOI: 10.1016/j.jenvman.2024.122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
The Sustainable Development Goals (SDGs) are essential measure for preserving the balance between human well-being and natural ecosystems. The benefit of preserving ecosystems health play a crucial role in promoting the SDGs by providing stable ecosystem services (ESs). However, the ecological health of mountainous cities is vulnerable, with relative low ecological resilience. To investigate the conflict between ecosystems and sustainable development, this study takes the Chengdu-Chongqing Urban Agglomeration as the study area. The major tasks and results in this study include: (1) using the entropy weighting method and the InVEST model, we combined remote sensing, geographic, and statistical data to quantify three types of SDGs (economic, social, environmental) and four ESs (water yield, soil conservation, habitat quality, carbon storage), and establish a localized sustainable development assessment framework that is applicable to the Chengdu-Chongqing Urban Agglomeration. The results show that from 2014 to 2020, the three types of SDGs exhibited an overall upward trend, with the lowest values occurring in 2016. The gap between different counties has narrowed, but significant regional differences still remain, indicating an unbalanced development status quo. Among the 142 counties, water yield and soil conservation values show a consistent downward trend but occupies significant interannual variations, while habitat quality and carbon storage values increases consistently each year. (2) using Spearman's nonparametric correlation analysis and multiscale geographically weighted regression model to explore the temporal variation and spatial heterogeneity of correlations between county ESs and SDGs. The results showed significant heterogeneity in the spatial trade-offs and synergies between ESs and SDGs, with two pairs of synergies weakening, seven pairs of trade-offs increasing, and the strongest negative correlation between Economic Sustainable Development Goals and habitat quality. (3) we applied the self-organizing mapping neural networks to analyze the spatial clustering characteristics of ESs-SDGs. Based on the spatial clustering effects, we divides the Chengdu-Chongqing Urban Agglomeration into four zones, and different zones have different levels of ESs and SDGs. The targeted strategies should be adopted according to local conditions. This work is of great practical importance in maintaining the stability and sustainable development of the Chengdu-Chongqing Urban Agglomeration ecosystem and provides a scientific reference for the optimal regulation of mountainous cities.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
| | - Ying Yao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
| | - Keming Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiaoai Dai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China; Digital Hu Huanyong Line Research Institute, Chengdu University of Technology, Chengdu, 610059, China.
| | - Wenyu Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
| | - Hang Dai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
| | - Ke Lu
- Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Weile Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Heng Lu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China; School of Architecture, Southeast University, Nanjing, 210096, China
| | - Huan Huang
- Digital Hu Huanyong Line Research Institute, Chengdu University of Technology, Chengdu, 610059, China; College of Business, Chengdu University of Technology, Chengdu, 610059, China
| | - Meilian Wang
- Faculty of Geoscience and Engineering, Southwest Jiaotong University, Chengdu, 610059, China
| |
Collapse
|
3
|
Vargas-Madriz ÁF, Luzardo-Ocampo I, Moreno-Celis U, Roldán-Padrón O, Chávez-Servín JL, Vergara-Castañeda HA, Martínez-Pacheco M, Mejía C, García-Gasca T, Kuri-García A. Comparison of Phytochemical Composition and Untargeted Metabolomic Analysis of an Extract from Cnidoscolus aconitifolius (Mill.) I. I. Johnst and Porophyllum ruderale (Jacq.) Cass. and Biological Cytotoxic and Antiproliferative Activity In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:1987. [PMID: 37653904 PMCID: PMC10222540 DOI: 10.3390/plants12101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Cnidoscolus aconitifolius (CA) and Porophyllum ruderale (PR) are representative edible plants that are a traditional food source in Mexico. This research aimed to analyze the phytochemical composition and untargeted metabolomics analysis of CA and PR and evaluate their antiproliferative effect in vitro. The phytochemical composition (UPLC-DAD-QToF/MS-ESI) identified up to 38 polyphenols and selected organic acids that were clustered by the untargeted metabolomics in functional activities linked to indolizidines, pyridines, and organic acids. Compared with PR, CA displayed a higher reduction in the metabolic activity of human SW480 colon adenocarcinoma cells (LC50: 10.65 mg/mL), and both extracts increased the total apoptotic cells and arrested cell cycle at G0/G1 phase. PR increased mRNA Apc gene expression, whereas both extracts reduced mRNA Kras expression. Rutin/epigallocatechin gallate displayed the highest affinity to APC and K-RAS proteins in silico. Further research is needed to experiment on other cell lines. Results suggested that CA and PR are polyphenol-rich plant sources exhibiting antiproliferative effects in vitro.
Collapse
Affiliation(s)
- Ángel Félix Vargas-Madriz
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
| | - Ivan Luzardo-Ocampo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
- Tecnologico de Monterrey, School of Engineering and Science, Campus Guadalajara, Av. General Ramon Corona 2514, Zapopan 45201, Mexico
| | - Ulisses Moreno-Celis
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
| | - Octavio Roldán-Padrón
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
| | - Jorge Luis Chávez-Servín
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
| | - Haydé A. Vergara-Castañeda
- Advanced Biomedical Research Center, School of Medicine, Universidad Autonoma de Queretaro, Querétaro 76010, Mexico;
| | - Mónica Martínez-Pacheco
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
- Laboratorio de Biomedicina Interdisciplinaria, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico
| | - Carmen Mejía
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
| | - Teresa García-Gasca
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
| | - Aarón Kuri-García
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autonoma de Queretaro, Querétaro 76230, Mexico; (Á.F.V.-M.); (U.M.-C.); (O.R.-P.); (J.L.C.-S.); (M.M.-P.); (C.M.)
| |
Collapse
|
4
|
Vázquez-Atanacio MJ, Bautista M, González-Cortazar M, Romero-Estrada A, De la O-Arciniega M, Castañeda-Ovando A, Sosa-Gutiérrez CG, Ojeda-Ramírez D. Nephroprotective Activity of Papaloquelite ( Porophyllum ruderale) in Thioacetamide-Induced Injury Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:3460. [PMID: 36559573 PMCID: PMC9784717 DOI: 10.3390/plants11243460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Acute kidney injury and impaired kidney function is associated with reduced survival and increased morbidity. Porophyllum ruderale is an edible plant endemic to Mexico used in Mexican traditional medicine. The aim of this study was to evaluate the nephroprotective effect of a hydroalcoholic extract (MeOH:water 70:30, v/v) from the aerial parts of P. ruderale (HEPr). Firstly, in vitro the antioxidant and anti-inflammatory activity of HEPr was determined; after the in vivo nephroprotective activity of HEPr was evaluated using a thioacetamide-induced injury model in rats. HEPr showed a slight effect on LPS-NO production in macrophages (15% INO at 40 µg/mL) and high antioxidant activity in the ferric reducing antioxidant power (FRAP) test, followed by the activity on DPPH and ABTS radicals test (69.04, 63.06 and 32.96% of inhibition, respectively). In addition, values of kidney injury biomarkers in urine (urobilinogen, hemoglobin, bilirubin, ketones, glucose, protein, pH, nitrites, leukocytes, specific gravity, and the microalbumin/creatinine) and serum (creatinine, urea, and urea nitrogen) of rats treated with HEPr were maintained in normal ranges. Finally, 5-O-caffeoylquinic, 4-O-caffeoylquinic and ferulic acids; as well as 3-O-quercetin glucoside and 3-O-kaempferol glucoside were identified by HPLC as major components of HEPr. In conclusion, Porophyllum ruderale constitutes a source of compounds for the treatment of acute kidney injury.
Collapse
Affiliation(s)
- María José Vázquez-Atanacio
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - Mirandeli Bautista
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1., Centro, Xochitepec 62790, Morelos, Mexico
| | - Antonio Romero-Estrada
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Minarda De la O-Arciniega
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca-Tulancingo km 4.5 Carboneras, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Carolina G. Sosa-Gutiérrez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
| | - Deyanira Ojeda-Ramírez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
| |
Collapse
|
5
|
Chroho M, Aazza M, Bouymajane A, Majdoub YOE, Cacciola F, Mondello L, Zair T, Bouissane L. HPLC-PDA/ESI-MS Analysis of Phenolic Compounds and Bioactivities of the Ethanolic Extract from Flowers of Moroccan Anacyclus clavatus. PLANTS (BASEL, SWITZERLAND) 2022; 11:3423. [PMID: 36559535 PMCID: PMC9782985 DOI: 10.3390/plants11243423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In this work, polyphenols were extracted from Anacylus clavatus flowers using a hydroethanolic solvent, and the obtained extract was studied for its total phenol and flavonoid contents and evaluated for its antioxidant and antibacterial capacities. The contents of total phenols and flavonoids were measured by employing gallic acid and quercetin as references, respectively, and the phenolic composition analysis was conducted using high-performance liquid chromatography combined with a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA/ESI-MS). The antioxidant capacity of the extracts was tested using a potassium ferric reducing antioxidant power (PFRAP) assay, and the antibacterial activity assay was carried out against Gram-negative bacteria (Escherichia coli and Salmonella typhimirium) and Gram-positive bacteria (Staphyloccocus aureus and Listeria monocytogenes) using the broth microdilution assay. The phenolic and flavonoid contents of the extracts equaled 9.53 ± 0.48 mg GAE/g dm and 1.31 ± 0.06 mg QE/g dm, respectively. The chromatographic analysis of the phenolic profile detected 26 phenolic compounds belonging to phenolic acids, flavones and flavonols, and with the caffeoylquinic acid derivatives being the major phenolic compounds present in 12 isomers. Only one organic compound, viz. citric acid, was found. The extracts exhibited interesting antioxidant activity. Bacteriostatic activity towards Escherichia coli and bactericidal activity against Salmonella typhimirium, Staphyloccocus aureus and Listeria monocytogenes were determined. This study revealed that Anacyclus clavatus flower extracts contain phenolic compounds with interesting bioactivities.
Collapse
Affiliation(s)
- Mounia Chroho
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
- Research Team Chemistry of Bioactive Molecules and Environment, Laboratory of Innovative Materials and Biotechnologies of Natural Resources, Faculty of Sciences, Moulay Ismail University, BP 11201, Meknes 50070, Morocco
| | - Mustapha Aazza
- Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, BP 11201, Meknes 50070, Morocco
| | - Aziz Bouymajane
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, BP 11201, Meknes 50070, Morocco
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Chromaleont s.r.l., c/o, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Touriya Zair
- Research Team Chemistry of Bioactive Molecules and Environment, Laboratory of Innovative Materials and Biotechnologies of Natural Resources, Faculty of Sciences, Moulay Ismail University, BP 11201, Meknes 50070, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| |
Collapse
|
6
|
Dhyani P, Sati P, Sharma E, Attri DC, Bahukhandi A, Tynybekov B, Szopa A, Sharifi-Rad J, Calina D, Suleria HAR, Cho WC. Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies. Cancer Cell Int 2022; 22:305. [PMID: 36207736 PMCID: PMC9540722 DOI: 10.1186/s12935-022-02721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, 263 136, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, 248 001, Uttarakhand, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar Garhwal, 246 174, Uttarakhand, India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Comparison of the Phytochemical Variation of Non-Volatile Metabolites within Mother Tinctures of Arnica montana Prepared from Fresh and Dried Whole Plant Using UHPLC-HRMS Fingerprinting and Chemometric Analysis. Molecules 2022; 27:molecules27092737. [PMID: 35566089 PMCID: PMC9103735 DOI: 10.3390/molecules27092737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Arnica montana L. has been recognized for centuries as an herbal remedy to treat wounds and promote healing. It also has a long tradition of use in homeopathy. Depending on its medicinal utilization, standardization regulations allow different manufacturing processes, implying different raw materials, such as the whole arnica plant in its fresh or dried state. In this study, an untargeted metabolomics approach with UHPLC-HRMS/MS was used to cross-compare the phytochemical composition of mother tinctures of A. montana that were prepared from either fresh whole plant (fMT) matter or from oven-dried whole plant (dMT) matter. The multivariate data analysis showed significant differences between fMT and dMT. The dereplication of the HRMS and MS/MS spectra of the more discriminant compounds led to annotated quinic acid, dicaffeoyl quinic acids, ethyl caffeate, thymol derivatives and dehydrophytosphingosine, which were increased in fMT, while Amadori rearrangement products (ARP) and methoxyoxaloyl-dicaffeoyl quinic acid esters were enhanced in dMT. Neither sesquiterpene lactones nor flavonoids were affected by the drying process. This is the first time that a sphingosine, ethyl caffeate and ARP are described in A. montana. Moreover, putative new natural products were detected as 10-hydroxy-8,9-epoxy-thymolisobutyrate and an oxidized proline fructose conjugate, for which isolation and full structure elucidation will be necessary to verify this finding.
Collapse
|
8
|
The contribution of phenolics to the anti-inflammatory potential of the extract from Bolivian coriander (Porophyllum ruderale subsp. ruderale). Food Chem 2022; 371:131116. [PMID: 34583181 DOI: 10.1016/j.foodchem.2021.131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Porophyllum ruderale subsp. ruderale is a food product used for seasoning in Central and Southern America. The present research aimed to investigate the chemical composition of an extract prepared from aerial parts of P. ruderale using UHPLC-DAD-MS/MS, to isolate and identify major natural products present in the extract, and to furtherly investigate their anti-inflammatory activity in vitro. Twenty-five compounds were detected and characterized using UV-Vis and MS data. All characterized compounds were quantified. Ten major phenolics were isolated and identified by NMR. One previously undescribed natural product was isolated and established as 1-O-(4-hydroxy-3,5-dimethoxy)benzoyl-6-O-galloyl-β-d-glucose (12). Anti-inflammatory activity was evaluated based on the influence of the extract and isolated compounds on the TLR4-dependent secretion of IL-8 and TNF-α by human primary neutrophils in vitro. Phenolic acids, and caffeic acid derivatives in particular, contributed to the extract's bioactivity.
Collapse
|