1
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
2
|
Galvão F, Dos Santos E, Gomes da Silva Dantas F, Irlan da Silva Santos J, da Paz Costa Sauda T, Carvalho Dos Santos A, Carvalho Souza RI, da Silva Pinto L, Ferreira Moraes CA, Sangalli A, Leite Kassuya CA, Nogueira CR, Pires de Oliveira KM. Chemical composition and effects of ethanolic extract and gel of Cochlospermum regium (Schrank) Pilg. Leaves on inflammation, pain, and wounds. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115881. [PMID: 36349588 DOI: 10.1016/j.jep.2022.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cochlospermum regium is well-known as "Algodãozinho do cerrado" in folk Brazilian medicine, and is used to fight infections, inflammation and skin disorders. AIM OF THE STUDY To identify the phytochemical constituents and the effects of the ethanolic extract of C. regium leaves (EECR) on inflammation and pain, and the effects of C. regium gel (GEECR) on wound healing. MATERIALS AND METHODS Animals were treated with EECR (30-300 mg/kg) or GEECR (1.25 and 2.5%) and studies were conducted using carrageenan-induced pleurisy and paw edema tests, formalin-induced pain model, and excision wound model. RESULTS In total, 25 compounds, including quercitrin, methyl gallate, and 1,2,3,4,6-pentagalloylhexose, with highest detectability were identified. The treatments reduced leukocyte migration, nitric oxide production, protein extravasation, edema, mechanical hyperalgesia, pain in both phases (neurogenic and inflammatory), cold hypersensitivity, and improved wound closure and tissue regeneration. CONCLUSIONS The present findings established the anti-inflammatory, anti-nociceptive, and wound healing potential of the leaves of C. regium, confirming the potential therapeutic effect of this plant.
Collapse
Affiliation(s)
- Fernanda Galvão
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Elisangela Dos Santos
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Fabiana Gomes da Silva Dantas
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - José Irlan da Silva Santos
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Talita da Paz Costa Sauda
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Ariany Carvalho Dos Santos
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | | | - Luciano da Silva Pinto
- Departamento de Química, Universidade Federal de São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | | | - Andréia Sangalli
- Faculdade Intercultural Indígena, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | | | - Cláudio Rodrigo Nogueira
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Kelly Mari Pires de Oliveira
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil; Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
3
|
Ray RR, Pattnaik S. Contribution of phytoextracts in challenging the biofilms of pathogenic bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Li J, Shen Y, Zuo J, Gao S, Wang H, Wang Y, Yi L, Hou X, Wang Y. Inhibitory Effect of Monoterpenoid Glycosides Extracts from Peony Seed Meal on Streptococcus suis LuxS/AI-2 Quorum Sensing System and Biofilm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16024. [PMID: 36498098 PMCID: PMC9740070 DOI: 10.3390/ijerph192316024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Streptococcus suis LuxS/AI-2 quorum sensing system regulates biofilm formation, resulting in increased pathogenicity and drug resistance, and diminished efficacy of antibiotic treatment. The remaining peony seed cake after oil extraction is rich in monoterpenoid glycosides, which can inhibit the formation of bacterial biofilm. In this study, we investigated the effect of seven major monocomponents (suffruticosol A, suffruticosol B, suffruticosol C, paeonifloin, albiflorin, trans-ε-viniferin, gnetin H) of peony seed meal on minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of S. suis. The results showed that the MICs of the seven single components were all greater than 200 μg/mL, with no significant bacteriostatic and bactericidal advantages. Crystal violet staining and scanning electron microscope observation showed that the seven single components had a certain inhibitory effect on the biofilm formation ability of S. suis at sub-MIC concentration. Among them, the ability of paeoniflorin to inhibit biofilm was significantly higher than that of the other six single components. AI-2 signaling molecules were detected by bioreporter strain Vibrio harvey BB170. The detection results of AI-2 signal molecules found that at 1/2 MIC concentration, paeoniflorin significantly inhibited the production of S. suis AI-2 signal, and the inhibitory effect was better than that of the other six single components. In addition, molecular docking analysis revealed that paeoniflorin had a significant binding activity with LuxS protein compared with the other six single components. The present study provides evidence that paeoniflorin plays a key role in the regulation of the inhibition of S. suis LuxS/AI-2 system and biofilm formation in peony seed meal.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471000, China
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang 471000, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| |
Collapse
|
5
|
Liu YX, An XL, Xu YN, Hao YJ, Piao XC, Jin MY, Lian ML. Antibacterial and antibiofilm properties of dichloromethane fraction of extracts from adventitious roots of Eurycoma longifolia against Staphylococcus aureus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Fan J, Sun H, Liu Y, Li X, Wu H, Ren X. Sanchen powder extract combined with vancomycin against methicillin-resistant Staphylococcus aureus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11010069. [PMID: 35052946 PMCID: PMC8773207 DOI: 10.3390/antibiotics11010069] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.
Collapse
|
8
|
Đukanović S, Ganić T, Lončarević B, Cvetković S, Nikolić B, Tenji D, Randjelović D, Mitić-Ćulafić D. Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms. J Appl Microbiol 2021; 132:1840-1855. [PMID: 34779074 DOI: 10.1111/jam.15360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS Because the Staphylococcus aureus is one of the most well-known pathogens associated with medical devices and nosocomial infections, the aim of the study was to examine antibiofilm potential of emodin against it. METHODS AND RESULTS Antibacterial activity was examined through microdilution assay. Antibiofilm testing included crystal violet staining of biofilm biomass and morphology analysis by Atomic force microscopy (AFM). Furthermore, aerobic respiration was monitored using the Micro-Oxymax respirometer. For investigation of gene expression qRT-PCR was performed. Emodin demonstrated strong antibacterial activity and ability to inhibit biofilm formation of all tested strains. The effect on preformed biofilms was spotted in few strains. AFM revealed that emodin affects biofilm structure and roughness. Monitoring of respiration under emodin treatment in planktonic and biofilm form revealed that emodin influenced aerobic respiration. Moreover, qRT-PCR showed that emodin modulates expression of icaA, icaD, srrA and srrB genes, as well as RNAIII, and that this activity was strain-specific. CONCLUSION The results obtained in this study indicate the novel antibiofilm activity of emodin and its multiple pathways of action. SIGNIFICANCE AND IMPACT OF STUDY This is the first study that examined pathways through which emodin expressed its antibiofilm activity.
Collapse
Affiliation(s)
| | - Tea Ganić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Branka Lončarević
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dina Tenji
- Faculty of Science, University of Novi Sad, Novi Sad, Serbia
| | - Danijela Randjelović
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
9
|
Wu D, Wei D, Du M, Ming S, Ding Q, Tan R. Targeting Antibacterial Effect and Promoting of Skin Wound Healing After Infected with Methicillin-Resistant Staphylococcus aureus for the Novel Polyvinyl Alcohol Nanoparticles. Int J Nanomedicine 2021; 16:4031-4044. [PMID: 34140770 PMCID: PMC8203101 DOI: 10.2147/ijn.s303529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Topical agents typically remain in the wound site for time duration that are too short to effectively eradicate MRSA tradition formation of BZK that can be maintained within the wound site for longer time periods, should be more effective. METHODS The novel chitosan and poly (D,L-lactide-co-glycoside) nanoparticles loaded with benzalkonium bromide (BZK) were designed, for the promotion wound healing after MRSA infection. The physical characterization of these nanoparticles, as well as their antibacterial activity in vitro, release profile in simulated wound fluid, cell toxicity, anti-biofilm activity, and their ability to improve the skin wound healing in a mouse model were also studied. RESULTS These novel nanoparticles were found to have a significant antibacterial activity (p<0.01), both in vitro and in vivo test. The stronger anti-biofilm ability of the nanoparticles to inhibit the formation of bacterial biofilms, at a concentration of 3.33 μg/mL, and clear existing bacterial biofilms, at a concentration of 5 mg/mL, compared with its water solution. In addition, significant damage to bacterial cell walls also was found, providing insight into the mechanism of antibacterial activity. CONCLUSION Taken together, these results demonstrated the ability of BZK-loaded nanoparticles in the promotion of skin wound healing with MRSA infection. The current findings open a new avenue for nanomedicine development and future clinical applications in the treatment of wounds.
Collapse
Affiliation(s)
- Dengyan Wu
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Dong Wei
- Plastic Surgery, Pengshui County People’s Hospital, Pengshui, 409600, People’s Republic of China
| | - Maotao Du
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Song Ming
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Qian Ding
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Ranjing Tan
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|