1
|
Li J, Liu J, Shi W, Guo J. Role and molecular mechanism of Salvia miltiorrhiza associated with chemical compounds in the treatment of diabetes mellitus and its complications: A review. Medicine (Baltimore) 2024; 103:e37844. [PMID: 38640337 PMCID: PMC11029945 DOI: 10.1097/md.0000000000037844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent diseases worldwide, greatly impacting patients' quality of life. This article reviews the progress in Salvia miltiorrhiza, an ancient Chinese plant, for the treatment of DM and its associated complications. Extensive studies have been conducted on the chemical composition and pharmacological effects of S miltiorrhiza, including its anti-inflammatory and antioxidant activities. It has demonstrated potential in preventing and treating diabetes and its consequences by improving peripheral nerve function and increasing retinal thickness in diabetic individuals. Moreover, S miltiorrhiza has shown effectiveness when used in conjunction with angiotensin-converting enzyme inhibitors, angiotensin receptor blockers (ARBs), and statins. The safety and tolerability of S miltiorrhiza have also been thoroughly investigated. Despite the established benefits of managing DM and its complications, further research is needed to determine appropriate usage, dosage, long-term health benefits, and safety.
Collapse
Affiliation(s)
- Jiajie Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jinxing Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Weibing Shi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jinchen Guo
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
2
|
De G, Yang M, Cai W, Zhao Q, Lu L, Chen A. Salvia miltiorrhiza augments endothelial cell function for ischemic hindlimb recovery. Biol Chem 2024; 405:119-128. [PMID: 36869860 DOI: 10.1515/hsz-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.
Collapse
Affiliation(s)
- Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
3
|
Guo N, Fang Z, Zang Q, Yang Y, Nan T, Zhao Y, Huang L. Spatially resolved metabolomics combined with bioactivity analyses to evaluate the pharmacological properties of two Radix Puerariae species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116546. [PMID: 37121451 DOI: 10.1016/j.jep.2023.116546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE P. lobata and P. thomsonii are medicinal plants with similar pharmacological functions but different therapeutic effects. A novel method is presented herein to investigate metabolites in terms of their distribution and qualification, quantification is necessary to elucidate the different therapeutic effects of the two Puerariae species. AIM OF THE STUDY The aim of the present study was to perform spatially resolved metabolomics combined with bioactivity analyses to systematically compare the metabolite differences in P. lobata and P. thomsonii by distribution, qualification, quantification, and biological activity to evaluate their pharmacological properties. MATERIALS AND METHODS Air flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was performed to characterize the differences in the metabolite distributions of P. lobata and P. thomsonii. Further qualitative and quantitative analyses of the differential metabolites were performed using liquid chromatography-mass spectrometry (LC-MS). Biological activities correlated with the differences in the metabolites were validated by MTT assays. RESULTS Some metabolites showed complementary distributions of the phloem and xylem in the two species, saccharide, vitamin, and inosine levels were higher in the phloem of P. thomsonii but higher in the xylem of P. lobata. The 3'-hydroxyl puerarin level was higher in the xylem of P. thomsonii but higher in the phloem of P. lobata. Qualitative and quantitative analyses of the metabolites revealed a total of 52 key differential metabolites. MTT assays showed that daidzein, daidzin, puerarin, ononin, genistin, formononetin, 3'-hydroxy puerarin, 3'-methoxy puerarin, mirificin, and 3'-methoxy daidzin exerted protective effects on H9c2 cells against hypoxia/reoxygenation injury. P. lobata extracts exhibited a significantly better protective efficacy than P. thomsonii extracts. CONCLUSIONS In this study, AFADESI-MSI combined with LC-MS and biological activities comprehensively elucidated metabolite differences in the distribution, qualification, quantification, and pharmacological properties of P. lobata and P. thomsonii. The results of this study could provide a novel strategy for species identification and quality assessment of similar Chinese herbal medicines.
Collapse
Affiliation(s)
- Na Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yiqing Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Tiegui Nan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuping Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Lin C, Zhang L, Zhang X, Wang X, Wang C, Zhang Y, Wang J, Li X, Song Z. Spatiotemporal and Transcriptional Characterization on Tanshinone Initial Synthesis in Salvia miltiorrhiza Roots. Int J Mol Sci 2022; 23:ijms232113607. [PMID: 36362395 PMCID: PMC9655840 DOI: 10.3390/ijms232113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Tanshinones are the bioactive constituents of Danshen (Salvia miltiorrhiza Bunge), which is used in Traditional Chinese Medicine to treat cardiovascular and other diseases, and they synthesize and accumulate in the root periderm of S. miltiorrhiza. However, there is no relevant report on the initial stage of tanshinone synthesis, as well as the root structure and gene expression characteristics. The present study aims to provide new insights into how these bioactive principles begin to synthesize by characterizing possible differences in their biosynthesis and accumulation during early root development from both spatial and temporal aspects. The morphological characteristics and the content of tanshinones in roots of S. miltiorrhiza were investigated in detail by monitoring the seedlings within 65 days after germination (DAGs). The ONT transcriptome sequencing was applied to investigate gene expression patterns. The periderm of the S. miltiorrhiza storage taproot initially synthesized tanshinone on about 30 DAGs. Three critical stages of tanshinone synthesis were preliminarily determined: preparation, the initial synthesis, and the continuous rapid synthesis. The difference of taproots in the first two stages was the smallest, and the differentially expressed genes (DEGs) were mainly enriched in terpene synthesis. Most genes involved in tanshinone synthesis were up regulated during the gradual formation of the red taproot. Plant hormone signal transduction and ABC transport pathways were widely involved in S. miltiorrhiza taproot development. Five candidate genes that may participate in or regulate tanshinone synthesis were screened according to the co-expression pattern. Moreover, photosynthetic ferredoxin (FD), cytochrome P450 reductase (CPR), and CCAAT binding transcription factor (CBF) were predicted to interact with the known downstream essential enzyme genes directly. The above results provide a necessary basis for analyzing the initial synthesis and regulation mechanism of Tanshinones.
Collapse
Affiliation(s)
- Caicai Lin
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Lin Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xia Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xin Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Chaoyang Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Yufeng Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Jianhua Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Xingfeng Li
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| | - Zhenqiao Song
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| |
Collapse
|
5
|
Sun W, Zhang L, Fang Z, Han L, Wang Q, Leng Y, Li M, Xue Y, Wu Y, Li Z, Wang H, Chen L. Shuxuetong injection and its peptides enhance angiogenesis after hindlimb ischemia by activating the MYPT1/LIMK1/Cofilin pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115166. [PMID: 35248678 DOI: 10.1016/j.jep.2022.115166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuxuetong (SXT) injection is formulated by leech and earthworm, has been widely used in the treatment of thrombotic cardiovascular and cerebrovascular diseases with remarkable clinical efficacy. AIM OF THE STUDY The purpose of this study is to investigate the protective mechanism of SXT injection on the mice model of hindlimb ischemia, and to evaluate the angiogenic effects of SXT injection and its main active substances. MATERIALS AND METHODS Hindlimb ischemia was induced by left femoral artery ligation. After operation, the mice were injected with saline, 10 mg/kg/d cilostazol, 37.5 mg/kg/d SXT injection, 75 mg/kg/d SXT injection and 150 mg/kg/d SXT injection via tail vein for 4 weeks. Ischemia severity was assessed using laser Doppler perfusion imaging system. Tissue recovery and capillary density were evaluated by histological and immunofluorescent staining. Vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor (PDGF-BB) expression were measured by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. Human umbilical vein endothelial cells (HUVECs) proliferation was measured using a BrdU kit and the viability of HUVECs was performed by MTT assay. Migration of HUVECs was performed by the wound healing method and a modified transwell assay. Capillary tube formation by HUVECs was examined by using Matrigel assay. Western blotting was used to detect the expressions of p-Cofilin, p-MYPT1, and p-LIMK1. RESULTS SXT injection treatment significantly restored the blood flow and reduced tissue injury in mouse gastrocnemius muscle. SXT injection treatment increased capillary density and promoted angiogenesis in hindlimb ischemia. Moreover, SXT injection enhanced the expression of VEGF-A and PDGF-BB at both mRNA and protein levels in ischemic tissue of mice. SXT injection and its main active peptides dramatically increased the migration and capillary tube formation of HUVECs. SXT injection and its peptides enhanced protein expressions of the phosphorylation of MYPT1, Cofilin, and LIMK1. DSYVGDEAQSKR, YNELRVAPEEHP, and IQFLPEGSPVTM may act as the active components of SXT injection. CONCLUSION SXT injection promoted angiogenesis and improved function recovery in hindlimb ischemia mice by regulation of VEGF-A/PDGF-BB. Moreover, SXT injection and its active peptides induced cell migration and tube formation in HUVECs through activating the MYPT1/LIMK1/Cofilin pathway. This study provided experimental basis for SXT injection in the treatment of ischemic diseases and revealed the effective substance of SXT injection in regulating angiogenesis, providing better evidence for the clinical application of SXT injection.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhirui Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yongsheng Wu
- Mudanjiang YouBo Pharmaceutical Co. Ltd, Mudanjiang, 157000, China
| | - Zhenguo Li
- Mudanjiang YouBo Pharmaceutical Co. Ltd, Mudanjiang, 157000, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Yu Y, Zhu Z, Xie M, Deng L, Xie X, Zhang M. Investigation on the Q-markers of Bushen Huoxue Prescriptions for DR treatment based on chemometric methods and spectrum-effect relationship. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114800. [PMID: 34748867 DOI: 10.1016/j.jep.2021.114800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a kind of complex complication of late diabetes mellitus with high incidence and risk of blindness. Bushen Huoxue Prescription (BHP), which consists of Rehmanniae radix (RR), Salviae miltiorrhizae radix et rhizoma (SMRR), Ginseng radix et rhizome (GRR) and Puerariae lobatae radix (PLR), has an active effect on the treatment of DR. However, the quality markers (Q-markers) of BHP are not entirely clear. PURPOSE This study aimed to screen the Q-markers of BHP for DR treatment based on the establishment of spectrum-effect relationship and verified experiment. MATERIALS AND METHODS In this study, 12 BHP samples (S1-S12) for fingerprint analysis and pharmacological evaluation were prepared according to a four-factor and twelve-level uniform design. High performance liquid chromatography-ultraviolet detector-evaporative light scattering detector (HPLC-UV-ELSD) was employed to analyze the fingerprint on the basis of the characteristics of BHP components. The evaluation of sample similarity was carried out by similarity analysis (SA) and hierarchical cluster analysis (HCA). The pharmacological indicators, including expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in the retina of Sprague Dawley (SD) rats induced by streptozotocin (STZ), were detected by enzyme-linked immunosorbent assay (ELISA). Besides, the spectrum-effect relationship between common peaks of fingerprints and the pharmacological results was investigated by partial least squares regression (PLSR) and canonical correlation analysis (CCA). The results of spectrum-effect relationship were verified by the expression of VEGF and HIF-1α on primary culture retinal Müller cells induced by hyperglycemia and hypoxia. RESULTS In the HPLC-UV-ELSD fingerprint, 23 common peaks in UV and 14 common peaks in ELSD were identified. The pharmacological results indicated that the expression of VEGF and HIF-1α in the retina of SD rats was inhibited by 12 BHP samples to varying degrees compared with the model group. Based on SA and heatmap of HCA, S4 and S8 were clearly distinguished from other samples. The results of PLSR and CCA revealed that the contents of puerarin, daidzin, salvianolic acid B and ginsenoside Rb1 were inversely correlated with the expression of VEGF and HIF-1α. Hence, the four compounds may be the main active components to prevent and treat DR. The results of intervention on primary culture retinal Müller cells showed that puerarin, daidzin, salvianolic acid B, and ginsenoside Rb1 can significantly inhibit the expression of VEGF and HIF-1α. CONCLUSIONS The spectrum-effect relationship of BHP was successfully established, and the Q-markers of BHP for the prevention and treatment of DR were preliminarily confirmed. It provides a feasible method for the research of quality control.
Collapse
Affiliation(s)
- Yueting Yu
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Ziyu Zhu
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mengjun Xie
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Liping Deng
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Mei Zhang
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|