1
|
Yang X, Wang Y, Li J, Tai Y, Yang K, Lv J, Sun J, Zhang H. From waste to wonder: exploring the hypoglycemic and anti-oxidant properties of corn processing by-products. Front Chem 2024; 12:1433501. [PMID: 39104778 PMCID: PMC11299435 DOI: 10.3389/fchem.2024.1433501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction: The industrial processing of corn (Zeamays L.) generates by-products such as corn silk, straw peels, and straw core, which contribute to adverse environmental impacts. Our study aimed to investigate sustainable approaches for mitigating these effects by evaluating the hypoglycemic potential and mechanisms of ethyl acetate fractions derived from these corn derivatives. Methods: We employed glucose consumption assays, high glucose stress tests, UPLC-QE-Orbitrap-MS analysis, molecular docking, and simulations to assess their components and efficacy. Antioxidant capacities were evaluated using DPPH, FRAP, ABTS, and •OH scavenging assays. Results: Notably, the ethyl acetate fraction extracted from straw peels (SPE) exhibited a high concentration of flavonoids and phenolic compounds along with pronounced hypoglycemic activity and antioxidant capacity. SPE significantly enhanced glucose consumption in insulin-resistant HepG2 cells while protecting HUVECs against damage caused by high glucose levels. Molecular docking analyses confirmed the interaction between active compounds and α-glucosidase as well as α-amylase, while molecular dynamic simulations indicated stability at their binding sites. Discussion: In conclusion, the hypoglycemic and antioxidative properties observed in corn by-products such as straw peels, corn silk, and straw core can be attributed to the inhibition of α-glucosidase and α-amylase activities, coupled with their rich phenolic and flavonoid content. These findings highlight the potential of these by-products for applications in healthcare management and their sustainable utilization, demonstrating significant value in the use of agricultural residues.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuelong Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingfeng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuxing Tai
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Kunping Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Wu C, He L, Zhang Y, You C, Li X, Jiang P, Wang F. Separation of flavonoids with significant biological activity from Acacia mearnsii leaves. RSC Adv 2023; 13:9119-9127. [PMID: 36950079 PMCID: PMC10026372 DOI: 10.1039/d3ra00209h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
Acacia mearnsii leaves, which are a rich source of flavonoids, were used to separate and purify myricitrin (W3) and myricetin-3-O-glucoside (W1). Further, the antioxidant and hypoglycemic activities of the two purified flavonoids were evaluated. The flavonoids were separated using solvent partition, macroporous adsorbent resin column, and Sephadex column chromatography, and purified using preparative reverse-phase high-performance liquid chromatography (HPLC). The purified flavonoids were characterized using HPLC, mass spectrometry, and nuclear magnetic resonance methods. A high yield (7.3 mg g-1 of crude extract) of W3 was obtained, with a high purity of 98.4%. Furthermore, the purity of W1 was over 95%. W1 and W3 showed strong antioxidant activity and significantly inhibited α-glucosidase. W3 also demonstrated substantial α-amylase inhibitory capacity. This study indicated that A. mearnsii leaves, which are discarded in significant amounts, can be used as a source of myricitrin, thus providing more adequate material for the production of antioxidants and type II diabetes inhibitors. Hence, A. mearnsii leaves have the potential to create great market economic value and environmental benefits.
Collapse
Affiliation(s)
- Cuihua Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals Nanjing 210037 China
| | - Lingxiao He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals Nanjing 210037 China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals Nanjing 210037 China
| | - Chaoqun You
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals Nanjing 210037 China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals Nanjing 210037 China
| | - Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals Nanjing 210037 China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals Nanjing 210037 China
| |
Collapse
|
3
|
Ray RR, Pattnaik S. Contribution of phytoextracts in challenging the biofilms of pathogenic bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Cui L, Ma Z, Wang D, Niu Y. Ultrasound-assisted extraction, optimization, isolation, and antioxidant activity analysis of flavonoids from Astragalus membranaceus stems and leaves. ULTRASONICS SONOCHEMISTRY 2022; 90:106190. [PMID: 36215890 PMCID: PMC9554832 DOI: 10.1016/j.ultsonch.2022.106190] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 05/27/2023]
Abstract
Astragalus membranaceus is a medicinal and edible species in China, with a variety of biological activities. This study evaluated the reuse potential of A. membranaceus waste as a source of food antioxidants. Antioxidant and antifungal activities of flavonoids, polysaccharides, and saponins from A. membranaceus stems and leaves were evaluated. Results showed that inhibition rate of flavonoids on six tested fungi reaches 100 % at a concentration of 5 mg/mL, and the antioxidant test demonstrated satisfactory antioxidant activity. On this basis, an extremely economical ultrasonic-assisted extraction of flavonoids from A. membranaceus stems and leaves was developed and optimized via response surface methodology (RSM). Optimized conditions included an extraction time of 35 min, ethanol concentration of 75 %, liquid-solid ratio of 40 mL/g, and extraction temperature of 58 °C, in which the extraction yield of flavonoids was 22.0270 ± 2.5739 mg/g. The total flavonoids were separated and purified using activity-guided isolation technology, and frac. ccd with strong antioxidant activity were analyzed via HPLC-MS/MS. Results showed that main components are isoquercitrin and astragalin. This study can provide a potential innovative application for the development of natural food antioxidants from A. membranaceus waste.
Collapse
Affiliation(s)
- Liyan Cui
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Zhennan Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yanbing Niu
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
5
|
Anti-Biofilm, Antibacterial, and Anti-Quorum Sensing Activities of Selected South African Plants Traditionally Used to Treat Diarrhoea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1307801. [PMID: 36212949 PMCID: PMC9534605 DOI: 10.1155/2022/1307801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
The development of resistance of microorganisms to conventional antibiotics is a major global health concern; hence, there is an increasing interest in medicinal plants as a therapeutic option. This study aimed to evaluate the antibacterial, anti-biofilm, and anti-quorum activities of crude extracts prepared using various solvents of nine indigenous South African plants used locally for the treatment of diarrhoea. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method and the crystal violet assay was used to test the anti-biofilm activity of the extracts against a panel of bacteria. Anti-quorum sensing activity of the extracts was assessed via inhibition of violacein production in Chromobacterium violaceum ATCC 12472. Preliminary screening of extracts against E. coli ATCC 25922 revealed that the acetone extracts had significant activity, with MIC values ranging from 0.04 to 0.63 mg/mL. Further screening against a panel of bacterial pathogens showed that the acetone extract of Bauhinia bowkeri was the most active with MIC of 0.01 mg/mL against Salmonella enteritidis, followed by Searsia lancea with MIC of 0.03 mg/mL against Bacillus cereus. All the plant extracts prevented the attachment of biofilms by more than 50% against at least one of the tested bacteria. However, only the mature biofilm of B. cereus was susceptible to the extracts, with 98.22% eradication by Searsia pendulina extract. The minimum quorum sensing inhibitory concentration of the extracts ranged from 0.08 to 0.32 mg/mL with S. lancea having the most significant activity. The extract of S. lancea had the best violacein production inhibitory activity with IC50 value of 0.17 mg/mL. Overall, the results obtained indicate that acetone extracts of S. leptodictya, S. lancea, S. batophylla, S. pendulina, B. galpinii, and B. bowkeri possess antibacterial and anti-biofilm activities and can modulate quorum sensing through the inhibition of violacein production. Therefore, these results signify the potential of the selected plant extracts in treating diarrhoea through inhibition of bacterial growth, biofilm formation inhibition, and quorum sensing antagonism, supporting their medicinal use.
Collapse
|
6
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|