1
|
Yang L, Zhang Q, Li C, Tian H, Zhuo C. Exploring the potential pharmacological mechanism of aripiprazole against hyperprolactinemia based on network pharmacology and molecular docking. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:105. [PMID: 39511179 PMCID: PMC11544107 DOI: 10.1038/s41537-024-00523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
The current primary therapeutic approach for schizophrenia is antipsychotic medication, and antipsychotic-induced hyperprolactinemia occurs in 40-80% of patients with schizophrenia. Aripiprazole, an atypical antipsychotic belonging to the quinolinone derivative class, can reduce the likelihood of developing hyperprolactinemia, but the pharmacological mechanisms of this reduction are unknown. This study aimed to explore the molecular mechanism of action of aripiprazole in treating hyperprolactinemia based on network pharmacology and molecular docking techniques. This study identified a total of 151 potential targets for aripiprazole from the DrugBank, TCMSP, BATMAN-TCM, TargetNet, and SwissTargetPrediction databases. Additionally, 71 hyperprolactinemia targets were obtained from the PharmGKB, DrugBank, TTD, GeneCards, OMIM, and DisGENET databases. Utilizing Venny 2.1.0 software, an intersection of 27 genes was identified between aripiprazole and hyperprolactinemia. To construct a common target protein-protein interaction (PPI) network, the common targets obtained from both sources were input into the STRING database. The resulting PPI network was then imported into Cytoscape 3.7.2 software, which identified eight core targets associated with aripiprazole's treatment of hyperprolactinemia. Subsequently, a PPI network was established for these targets. Enrichment analysis of the key targets was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in the DAVID database. Additionally, molecular docking verification of the interaction between aripiprazole and the core targets was performed using AutoDock Vina software. Aripiprazole's intervention in hyperprolactinemia primarily targets the following core proteins: Solute Carrier Family 6 Member 3 (SLC6A3), monoamine oxidase (MAO-B), Dopamine D2 receptor (DRD2), 5-hydroxytryptamine (serotonin) receptor 2A (HTR2A), 5-hydroxytryptamine (serotonin) receptor 2C (HTR2C), cytochrome P450 2D6 (CYP2D6), Dopamine D1 receptor (DRD1), Dopamine D4 receptor (DRD4). These targets are predominantly involved in biological processes such as the adenylate cyclase-activating adrenergic receptor signaling pathway, G-protein coupled receptor signaling pathway coupled to cyclic nucleotide second messenger, phospholipase C-activating G-protein coupled receptor signaling pathway, chemical synaptic transmission, and response to xenobiotic stimulus. Primary enrichment occurs in signaling pathways such as the neuroactive ligand-receptor interaction and serotonergic synapse pathways. Molecular docking results demonstrate a favorable affinity between aripiprazole and the core target proteins MAO-B, DRD2, SLC6A3, HTR2C, HTR2A, CYP2D6, DRD4, and DRD1. Network pharmacology predicted potential targets and signaling pathways for aripiprazole's intervention in hyperprolactinemia, offering theoretical support and a reference basis for optimizing clinical strategies and drug development involving aripiprazole.
Collapse
Affiliation(s)
- Lei Yang
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
- Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Key Laboratory of Rescue Cognitive Impairment in Schizophrenia (RCS-Lab), Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300222, China
- Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Qiuyu Zhang
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
- Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Key Laboratory of Rescue Cognitive Impairment in Schizophrenia (RCS-Lab), Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300222, China
- Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Chao Li
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China
- Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Key Laboratory of Rescue Cognitive Impairment in Schizophrenia (RCS-Lab), Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300222, China
- Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Hongjun Tian
- Key Laboratory of Rescue Cognitive Impairment in Schizophrenia (RCS-Lab), Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300222, China
- Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Chuanjun Zhuo
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin, 300222, China.
- Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
| |
Collapse
|
2
|
Gianolio S, Roura Padrosa D, Paradisi F. Combined chemoenzymatic strategy for sustainable continuous synthesis of the natural product hordenine. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:8434-8440. [PMID: 36353210 PMCID: PMC9621339 DOI: 10.1039/d2gc02767d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
To improve sustainability, safety and cost-efficiency of synthetic methodologies, biocatalysis can be a helpful ally. In this work, a novel chemoenzymatic stategy ensures the rapid synthesis of hordenine, a valuable phenolic phytochemical under mild working conditions. In a two-step cascade, the immobilized tyrosine decarboxylase from Lactobacillus brevis (LbTDC) is here coupled with the chemical reductive amination of tyramine. Starting from the abundant and cost-effective amino acid l-tyrosine, the complete conversion to hordenine is achieved in less than 5 minutes residence time in a fully-automated continuous flow system. Compared to the metal-catalyzed N,N-dimethylation of tyramine, this biocatalytic approach reduces the process environmental impact and improves its STY to 2.68 g L-1 h-1.
Collapse
Affiliation(s)
- Stefania Gianolio
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| |
Collapse
|
3
|
Cao YL, -Zhu L, Zhang H, Meng JH, Wu HJ, Wang X, Wu JH, Zou JL, Fang MS, An J, Chen YG. Total Barley Maiya Alkaloids Prevent Increased Prolactin Levels Caused by Antipsychotic Drugs and Reduce Dopamine Receptor D2 via Epigenetic Mechanisms. Front Pharmacol 2022; 13:888522. [PMID: 35865960 PMCID: PMC9294270 DOI: 10.3389/fphar.2022.888522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The dopamine D2 receptor (DRD2) plays an important role in the increased prolactin (PRL) levels associated with the pathogenesis of antipsychotic drugs (ADs). Elevated prolactin levels can affect people’s quality of life. Maiya alkaloids has been used to treat diseases associated with high PRL levels. Maiya, is a processed product of the mature fruits of Hordeum vulgare L. (a gramineous plant) after sprouting and drying and also a common Chinese herbal drug used in the clinic, is traditionally used to treat abnormal lactation, and is currently used clinically for the treatment of abnormal PRL levels.Aims: Epigenetic mechanisms can be related to DRD2 expression. We investigated the role of DRD2 methylation in the induction of PRL expression by ADs and the mechanism underlying the effects of total barley maiya alkaloids (TBMA) on this induction.Methods: The methylation rate of DRD2 in 46 people with schizophrenia who took risperidone was detected by MassARRAY sequencing. Humans were long term users of Ris. Seventy Sprague Dawley female rats were divided into seven groups. A rat model of risperidone-induced PRL was established, and the potential protective effects of TBMA and its components [e.g., hordenine (Hor)] on these increased PRL levels were investigated. The PRL concentration was detected by Enzyme-linked immunosorbent assay. PRL, DRD2, and DNA methyltransferase (DNMT1, DNMT3α, and DNMT3β) protein and mRNA expression were detected by western blotting and real-time polymerase chain reaction (RT-PCR), respectively. The positive rate of methylation in the DRD2 promoter region of rats was detected by MassARRAY sequencing.Results: Clinical studies showed that the positive rate of DRD2 methylation associated with increased PRL levels induced by ADs was significantly higher than in the normal prolactinemia (NPRL) group. In vivo and vitro, TBMA and Hor inhibited this induction of PRL expression and increased DRD2 expression by inhibiting the expression of the DNMTs.Conclusions: TBMA and hordenine increased DRD2 expression by inhibiting DNMT-dependent DRD2 methylation.
Collapse
Affiliation(s)
- Yu-Ling Cao
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Li -Zhu
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
| | - Hong Zhang
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Jun-Hua Meng
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
| | - Hua-Jun Wu
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
| | - Xiong Wang
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
| | - Jin-Hu Wu
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
| | - Ji-Li Zou
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
| | - Mao-Sheng Fang
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Jing An
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
- *Correspondence: Jing An, ; Yong-Gang Chen,
| | - Yong-Gang Chen
- Pharmacy Department of Wuhan University Tongren Hospital (The Third Hospital of Wuhan), Wuhan, China
- *Correspondence: Jing An, ; Yong-Gang Chen,
| |
Collapse
|