1
|
Ni Y, Wang Z, Zhuge F, Zhou K, Zheng L, Hu X, Wang S, Fu O, Fu Z. Hydrolyzed Chicken Meat Extract and Its Bioactive Cyclopeptides Protect Neural Function by Attenuating Inflammation and Apoptosis via PI3K/AKT and AMPK Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16708-16725. [PMID: 39016108 DOI: 10.1021/acs.jafc.4c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Cognitive decline is inevitable with age, and due to the lack of well-established pharmacotherapies for neurodegenerative disorders, dietary supplements have become important alternatives to ameliorate brain deterioration. Hydrolyzed chicken meat extract (HCE) and its bioactive components were previously found to improve neuroinflammation and cognitive decline by regulating microglia polarization. However, the effects and mechanisms of these bioactives on neurons remain unclear. Here, the most potent bioactive component on neural function in HCE was screened out, and the detailed mechanism was clarified through in vivo and in vitro experiments. We found that HCE, cyclo(Val-Pro), cyclo(Phe-Phe), cyclo(His-Pro), cyclo(Leu-Lys), and arginine exerted stronger anti-inflammatory and antioxidant effects among the 12 bioactives in amyloid β (Aβ)-treated HT-22 cells. Further transcriptome sequencing and polymerase chain reaction (PCR) array analysis showed that these bioactives participated in different signaling pathways, and cyclo(Val-Pro) was identified as the most potent cyclic dipeptide. In addition, the antiapoptotic and neuroprotective effect of cyclo(Val-Pro) was partly regulated by the activation of PI3K/AKT and AMPK pathways, and the inhibition of these pathways abolished the effect of cyclo(Val-Pro). Moreover, cyclo(Val-Pro) enhanced cognitive function and neurogenesis and alleviated neuroinflammation and oxidative stress in middle-aged mice, with an effect similar to HCE. Hippocampal transcriptome analysis further revealed that HCE and cyclo(Val-Pro) significantly enriched the neuroactive ligand-receptor interaction pathway, verified by enhanced neurotransmitter levels and upregulated neurotransmitter receptor-related gene expression. Therefore, the mechanism of cyclo(Val-Pro) on neural function might be associated with PI3K/AKT and AMPK pathway-mediated antiapoptotic effect and neurogenesis and the activation of the neurotransmitter-receptor pathway.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhaorong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Kexin Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xinyang Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sisi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ou Fu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
2
|
Li S, Li Y, Sun W, Qin Z, Lu Y, Song Y, Ga M, Yuan F, Liu Q. Sanwei DouKou Decoction ameliorate Alzheimer disease by increasing endogenous neural stem cells proliferation through the Wnt/β-catenin signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116364. [PMID: 36921910 DOI: 10.1016/j.jep.2023.116364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanwei DouKou decoction (SDKD) is a traditional Chinese medicine (TCM) prescription derived from the Tibetan medical book "Si Bu Yi Dian" and is clinically used for the treatment of Alzheimer's disease (AD). However, the potential mechanism of SDKD treatment for AD remains elusive. AIM OF THE STUDY This study aims to explore the potential mechanism by which SDKD alleviates AD. MATERIALS AND METHODS Extracts of SDKD were identified with Gas chromatograph-mass spectrometer (GC-MS). 5 × FAD mice were treated with SDKD for 8 weeks. The efficacy of SDKD against AD was evaluated by in-vivo experiments. Morris water maze and contextual fear conditioning tests were used to detect the learning and memory ability of mice. Hematoxylin-eosin staining (H&E) staining was used to observe the pathological changes of brain tissue. Immunohistochemistry was used to detect the positive expression of Nestin in hippocampus. In in-vitro experiments, the Cell Counting Kit 8 (CCK-8) technique was used to detect cell viability, the proliferation of neural stem cells was detected by immunofluorescence staining, the intracellular protein expression was detected by Western Blot. RESULTS The results of this study suggested that SDKD may ameliorate AD. SDKD significantly shortened the escape latency of mice in the Morris water maze experiment, increased the number of times the mice crossed the target quadrant, and prolonged freezing time in the contextual fear memory experiment. SDKD also improved neuronal pathology in the hippocampus, decreased neuronal loss, and increased Nestin protein levels. Furthermore, in in-vitro experiments, SDKD could significantly increase Neural stem cells (NSCs) viability, promoted NSCs proliferation, and also effectively activated the Wnt/β-catenin signalling pathway, increased Wnt family member 3A (Wnt3a), β-catenin and CyclinD1 protein levels, activated the NSCs proliferation pathways in AD model mouse brain tissue. CONCLUSIONS The present study demonstrated that sanwei doukou decoction can ameliorate AD by increasing endogenous neural stem cells proliferation through the Wnt/β-catenin signalling pathway. Our observations justify the traditional use of SDKD for a treatment of AD in nervous system.
Collapse
Affiliation(s)
- Shuran Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Wenjing Sun
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Zhiping Qin
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yangyang Lu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yujia Song
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Man Ga
- Institue of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Farong Yuan
- Jinhe Tibetan Medicine Co., Ltd, Xining, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing, China.
| |
Collapse
|
3
|
Gong L, Xie JB, Luo Y, Qiu ZD, Liu JR, Mei NJ, Chen ZY, Wang FL, Huang Y, Guo J, Cui GH, Zhang YQ, Lai CJS. Research progress of quality control for the seed of Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Suan-Zao-Ren) and its proprietary Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116204. [PMID: 36720435 DOI: 10.1016/j.jep.2023.116204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Ziziphi Spinosae (SZS), the seed of Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Chinese name Suan-Zao-Ren), is widely distributed in China, Laos, Myanmar, and Iran. It is a classic traditional Chinese medicine with sedative and sleeping effects. In clinical practice, there are more than 155 proprietary Chinese medicines containing SZS. However, many commercial SZS products are difficult to qualify using current methods. Moreover, there is a scarcity of quality standards for SZS in proprietary Chinese medicines. AIM OF THE STUDY The purpose of this study was to clearly reveal the quality indicators during the entire production process of SZS and its products. MATERIALS AND METHODS This study reviewed more than 230 articles and related books on the quality control of SZS and its proprietary Chinese medicines published over the last 40 years (from January 1979 to October 2022). Moreover, where available, information on the quality of SZS and its proprietary Chinese medicines was also collected from websites for comparison, including online publications (e.g. PubMed, CNKI, Google Scholar, and Web of Science), the information at Yaozhi website and China Medical Information Platform, along with some classic books on Chinese herbal medicine. The literature and information search were conducted using keywords such as "Suan-Zao-Ren", " Ziziphus jujuba" and "quality control", and the latest results from various databases were combined to obtain valid information. The active components, which in vivo exposure, and Q-markers were also summarized. RESULTS The jujuboside A, jujuboside B, and spinosin were revealed as the key Q-markers for SZS. Moreover, the advancements and prospects of the quality control for SZS and its extract, proprietary Chinese medicines, health foods, and adulterants were comprehensively summarized. The high-performance liquid chromatography-UV/evaporative light scattering detection and fingerprint analysis were found to be the mainstream methods for the SZS quality control. In particular, the novel quality evaluation method based on the unit content was applied for SZS and its proprietary Chinese medicines. Significant fluctuations were found in the contents of Q-markers. Moreover, the mass transfer rule of Q-markers was comprehensively clarified based on the entire production process, including production origins, ripening time, primary process, processing, compatibility decoction/extract, and storage. Ultimately, the crushing and compatibility of SZS were found to be the key steps affecting the active components. CONCLUSIONS In short, this study provides solid evidences to reveal quality indicators for the entire production process of developing rational quality standards for SZS and its products. Moreover, this study also provides a template quality control overview, which could be extended to other traditional Chinese medicines.
Collapse
Affiliation(s)
- Li Gong
- State Key Laboratory Breeding Base of Dao - di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300314, China
| | - Jun-Bo Xie
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Luo
- Department of Traditional Chinese and Ethnic Medicines, Guangxi Institute For Food and Drug Control, Nanning, 530021, China
| | - Zi-Dong Qiu
- State Key Laboratory Breeding Base of Dao - di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jin-Rui Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300314, China
| | - Nan-Ju Mei
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300314, China
| | - Ze-Yan Chen
- State Key Laboratory Breeding Base of Dao - di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng-Ling Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300314, China
| | - Yun Huang
- Pharmaceutical College, Hebei Medical University, Shijiazhuang, 050017, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao - di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang-Hong Cui
- State Key Laboratory Breeding Base of Dao - di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan-Qing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300314, China.
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao - di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Lin CW, Lin PY, Hsu YW, Pan TM, Lee CL. Monascus-fermented metabolites repressed amyloid β-peptide-induced neurotoxicity and inflammatory response in in vitro and in vivo studies. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
5
|
An F, Zhao R, Xuan X, Xuan T, Zhang G, Wei C. Calycosin ameliorates advanced glycation end product-induced neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease. Chem Biol Interact 2022; 368:110206. [PMID: 36195188 DOI: 10.1016/j.cbi.2022.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
Growing pieces of evidence suggest that Alzheimer's disease (AD) is interlinked with Type 2 diabetes mellitus (DM), which has been described as "type 3 DM". In this study, we investigate the neuronal insult attributable to advanced glycation end products (AGEs) as the models of DM-related AD to understand the effects exerted by calycosin on neurodegenerative changes both in vivo and in vitro studies and also studied the associated molecular mechanisms. The results reported herein revealed that the viability of the PC12 cells induced by AGEs increased when treated with calycosin. It was also observed that the learning and memory abilities of AGE-induced DM-related AD rats improved under these conditions. Analysis of the reported results indicates that calycosin can effectively down-regulate the activity of GSK-3β to result in the reversal of the process of tau hyperphosphorylation, inhibit the expression of RAGE and BACE-1 proteins, resulting in a decrease in the production of β-amyloid and regulate the PGC-1α/TFAM signaling pathway to repair mitochondrial dysfunction. It can be inferred that calycosin can potentially exhibit important therapeutic properties that can be exploited during the treatment of AD, especially DM-related AD.
Collapse
Affiliation(s)
- Fengmao An
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Ruyi Zhao
- Department of Medicine and Food, Tongliao Vocational College, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Xinran Xuan
- First Clinical Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Tianqi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Guowei Zhang
- College of Nursing, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Institute of Dementia, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chengxi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
6
|
Anti-Inflammatory Activity of 4-(4-(Heptyloxy)phenyl)-2,4-dihydro-3 H-1,2,4-triazol-3-one via Repression of MAPK/NF-κB Signaling Pathways in β-Amyloid-Induced Alzheimer's Disease Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155035. [PMID: 35956985 PMCID: PMC9370156 DOI: 10.3390/molecules27155035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 01/03/2023]
Abstract
Alzheimer’s disease (AD) is a major neurodegenerative disease, but so far, it can only be treated symptomatically rather than changing the process of the disease. Recently, triazoles and their derivatives have been shown to have potential for the treatment of AD. In this study, the neuroprotective effects of 4-(4-(heptyloxy)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (W112) against β-amyloid (Aβ)-induced AD pathology and its possible mechanism were explored both in vitro and in vivo. The results showed that W112 exhibits a neuroprotective role against Aβ-induced cytotoxicity in PC12 cells and improves the learning and memory abilities of Aβ-induced AD-like rats. In addition, the assays of the protein expression revealed that W112 reversed tau hyperphosphorylation and reduced the production of proinflammatory cytokines, tumor necrosis factor-α and interleukin-6, both in vitro and in vivo studies. Further study indicated that the regulation of mitogen-activated protein kinase/nuclear factor-κB pathways played a key role in mediating the neuroprotective effects of W112 against AD-like pathology. W112 may become a potential drug for AD intervention.
Collapse
|
7
|
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer's disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152:113208. [PMID: 35660246 DOI: 10.1016/j.biopha.2022.113208] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
AIM OF THE REVIEW This study aimed to reveal the classical signal pathways and important potential targets of traditional Chinese medicine (TCM) for treating Alzheimer's disease (AD), and provide support for further investigation on TCM and its active ingredients. MATERIALS AND METHODS Literature survey was conducted using PubMed, Web of Science, Google Scholar, CNKI, and other databases, with "Alzheimer's disease," "traditional Chinese medicine," "medicinal herb," "Chinese herb," and "natural plant" as the primary keywords. RESULTS TCM could modulate signal pathways related to AD pathological progression, including NF-κB, Nrf2, JAK/STAT, ubiquitin-proteasome pathway, autophagy-lysosome pathway-related AMPK/mTOR, GSK-3/mTOR, and PI3K/Akt/mTOR, as well as SIRT1 and PPARα pathway. It could regulate crosstalk between pathways through a multitarget, thus maintaining chronic inflammatory interaction balance, inhibiting oxidative stress damage, regulating ubiquitin-proteasome system function, modulating autophagy, and eventually improving cognitive impairment in patients with AD. CONCLUSION TCM could be multilevel, multitargeted, and multifaceted to prevent and treat AD. In-depth research on the prevention and treatment of AD with TCM could provide new ideas for exploring the pathogenesis of AD and developing new anti-AD drugs.
Collapse
Affiliation(s)
- Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
8
|
Zhen D, Na RS, Wang Y, Bai X, Fu DN, Wei CX, Liu MJ, Yu LJ. Cardioprotective effect of ethanol extracts of Sugemule-3 decoction on isoproterenol-induced heart failure in Wistar rats through regulation of mitochondrial dynamics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:114669. [PMID: 34600079 DOI: 10.1016/j.jep.2021.114669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sugemule-3 decoction (SD-3) is a commonly used prescription in Mongolian medicine which composed of the herbs Baidoukou (the fruit of Amomum compactum Sol. ex Maton), Baijusheng (the fruit of Lactuca sativa L.) and Biba (Piper longum L.). SD-3 has remarkable effect on the cardiovascular diseases, but its pharmacological mechanism has not been elucidated. AIM OF THIS STUDY To evaluate the cardioprotective effects and the potential mechanisms of the ethanol extracts of SD-3 against isoproterenol (ISO)-induced heart failure (HF) in rats. MATERIAL AND METHODS The ethanol extracts of SD-3 were prepared and analyzed by LC-ESI-MS/MS. One hundred male Wistar rats were randomly divided into five groups: control, ISO (HF) and different doses of SD-3 (0.4, 0.2, 0.1 g/kg/d) groups. HF model rats were established by intraperitoneal injecting of ISO. The left ventricular function was evaluated by echocardiography. Myocardial injury and fibrosis were examined by hematoxylin-eosin (HE) and Masson staining. Western-blot analysis was performed to determine the protein expression of apoptosis and mitochondrial dynamics in all the groups. Moreover, the structural changes in the mitochondria of cardiomyocytes were also observed by transmission electron microscopy. RESULTS Fifteen compounds were detected in the ethanol extracts of SD-3, include piperine, piperanine, etc. Rats administered with ISO showed a significant decline in the left ventricular function. The cardiac histopathological changes such as local necrosis, interstitial edema, and cardiac fibrosis were also observed in the ISO group. The treatment with SD-3 significantly inhibited these effects of ISO. ISO was found to increase the protein expression of Bax, cleaved-PARP and cleaved-caspase-3, -7 -9, destroy the balance between mitochondrial fusion and fission, and alter the mitochondrial morphology. The ethanol extracts of SD-3 could rebalance mitochondrial fusion and fission, and ameliorates the morphological abnormalities induced by ISO in mitochondria. CONCLUSION The current study demonstrated that ethanol extracts of SD-3 improved isoprenaline-induced cardiac hypertrophy and fibrosis through inhibiting cardiomyocyte apoptosis and regulating the mitochondrial dynamics.
Collapse
Affiliation(s)
- Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Ri-Song Na
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yu Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Xue Bai
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dan-Ni Fu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Cheng-Xi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Ming-Jie Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
9
|
Hu B, Zhen D, Bai M, Xuan T, Wang Y, Liu M, Yu L, Bai D, Fu D, Wei C. Ethanol extracts of Rhaponticum uniflorum (L.) DC flowers attenuate doxorubicin-induced cardiotoxicity via alleviating apoptosis and regulating mitochondrial dynamics in H9c2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114936. [PMID: 35007682 DOI: 10.1016/j.jep.2021.114936] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loulu flowers (LLF) is the inflorescence of Rhaponticum uniflorum (L.) DC. (R. uniflorum), a member of the Compositae family. This plant possesses heat-clearing properties, detoxification effects, and is therefore frequently used for the treatment of cardiovascular diseases. AIM OF THIS STUDY This study aimed to investigate the cardioprotective effects of ethanol extracts of LLF against doxorubicin (DOX)-induced cardiotoxicity and explore the associated mechanisms. MATERIAL AND METHODS Ethanol extracts of LLF were prepared and analyzed by LC-ESI-MS/MS. DOX-treated H9c2 cells and DOX-treated zebrafish models were used to explore the cardioprotective effect of ethanol extracts on myocardial function. The effects of LLF on DOX-induced cytotoxicity in H9c2 cells were investigated by MTT assay. Reactive Oxygen Species (ROS) levels, mitochondrial membrane potential (MMP), and nuclear translocation of NF-κB p65 were examined using fluorescent probes. The expression level of Bax, Bcl-2, PARP, caspase-3, cleaved-caspase3, caspase9, IκBα, p-IκBα, IKK, p-IKK, p65, p-p65, OPA1, Mfn1, MFF and Fis 1 and GAPDH was determined by western blotting. RESULTS Twenty-five compounds were detected in ethanol extracts of LLF, include Nicotinamide, Coumarin, Parthenolide, and Ligustilide. Pre-treatment with LLF attenuated the DOX-induced decrease in viability and ROS production in H9c2 cells. Moreover, LLF treatment maintained the mitochondrial membrane integrity and suppressed apoptosis by upregulating expression level of Bcl-2 and downregulating the expression level of Bax, cleaved-caspase-3, cleaved-caspase-9 and cleaved-PARP. In addition, LLF significantly inhibited the DOX-induced activation of NF-κB signaling. Cells treated with DOX showed aberrant expression of mitochondrial dynamics related proteins, and these effects were alleviated by LLF pre-treatment. In conclusion, these results show that LLF can alleviate DOX-induced cardiotoxicity by blocking NF-κB signaling and re-balancing mitochondrial dynamics. CONCLUSION Ethanol extracts of LLF is a potential treatment option to against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Boqin Hu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Tianqi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yu Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Mingjie Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Lijun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dongsong Bai
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Danni Fu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chengxi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
10
|
Ankul Singh S, Chitra V. The role of plant-based products in the prevention of neurological complications. Drug Metab Lett 2022; 15:DML-EPUB-122520. [PMID: 35422230 DOI: 10.2174/1872312815666220413095159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurological complications are most likely to be fatal and cause loss of ability to function or care for self. These include Alzheimer's disease and cognitive impairment. The main aim of the review is to determine the effects of various drugs and their cognitive risk with the need to opt for herbal therapy as an adjuvant in treating neurological conditions like Alzheimer's disease with lesser-known side effects. The Methodology: Involved a detailed literature survey which was performed through an online database, such as Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. The study included randomized trials and original research conducted by herbal supplements on animal models to assess expression of upregulation of signalling pathways. Various studies involved in treating dementia, neurological disorders, Alzheimer disease, cognitive dysfunction were included. RESULTS Found that various studies involved plant-based products were showing improvement in prevention of disease and signalling pathways with lesser-known side effects. CONCLUSION It was observed that plant-based products play a major role in the prevention of neurological complications. Herbal medicines could most suitably prevent Alzheimer's risk with less known side effects in contrast with the existing treatment patterns. However, to improve the utility of herbal medicines, more evidences from in vitro, in vivo, and clinical trials need to be addressed.
Collapse
Affiliation(s)
- Ankul Singh S
- SRM College of Pharmacy, SRM IST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Chitra V
- SRM College of Pharmacy, SRM IST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
11
|
Yotsuya Y, Hasegawa Y. Nacre extract from pearl oyster attenuates amyloid beta-induced memory impairment. J Nat Med 2022; 76:419-434. [PMID: 35044595 DOI: 10.1007/s11418-021-01598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Shells are composed of two types of calcium carbonate polymorphs-the prismatic layer and the nacreous layer. Pearls, composed of the nacreous layer, have been used in Chinese medicine since ancient times. We have previously shown that extracts from the nacreous layer improves scopolamine-induced memory impairment. However, whether pearl ameliorates cognitive disorders induced by amyloid-β 1-40 (Aβ1-40) has not been elucidated. In this study, we investigated whether nacre extract improves memory impairment induced by intracerebroventricular injection of Aβ1-40. Administration of nacre extract led to recovery from Aβ1-40-induced impairments in object recognition, short-term memory, and spatial memory. Nacre extract reversed the increase in lipid peroxidation caused by Aβ1-40 in the cerebral cortex by increasing the expression of catalase and superoxide dismutase. In addition, nacre extract recovered the expression and phosphorylation of cyclic AMP response element-binding protein (CREB), which decreased with Aβ1-40 treatment, and increased the expression of brain-derived neurotrophic factor and neuropeptide Y, which are regulated by CREB. Nacre extract also suppressed acetylcholine esterase activity and Aβ1-40-induced tau phosphorylation. Histochemical analysis of the hippocampus region showed that the nacre extract protected against Aβ1-40-induced neuronal loss in the hippocampus. These results suggest that nacre extract protects against Aβ1-40-induced neuronal cell death by suppressing oxidative stress and increasing the expression and phosphorylation of CREB.
Collapse
Affiliation(s)
- Yamato Yotsuya
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan.
| |
Collapse
|
12
|
Ge JW, Deng SJ, Xue ZW, Liu PY, Yu LJ, Li JN, Xia SN, Gu Y, Bao XY, Lan Z, Xu Y, Zhu XL. Imperatorin inhibits mitogen-activated protein kinase and nuclear factor kappa-B signaling pathways and alleviates neuroinflammation in ischemic stroke. CNS Neurosci Ther 2021; 28:116-125. [PMID: 34674376 PMCID: PMC8673701 DOI: 10.1111/cns.13748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
AIMS Microglia-mediated neuroinflammation plays an important role in the pathological process of ischemic stroke, and the effect of imperatorin on post-stroke neuroinflammation is not fully understood. METHODS Primary microglia were treated with imperatorin for 2 h followed by LPS (100 ng/ml) for 24 h. The expression of inflammatory cytokines was detected by RT-PCR, ELISA, and Western blot. The activation of MAPK and NF-κB signaling pathways were analyzed by Western blot. The ischemic insult was determined using a transient middle cerebral artery occlusion (tMCAO) model in C57BL/6J mice. Behavior tests were used to assess the neurological deficits of MCAO mice. TTC staining was applied to measure infract volume. RESULTS Imperatorin suppressed LPS-induced activation of microglia and pro-inflammatory cytokines release and attenuated ischemic injury in MCAO mice. The results of transcriptome sequencing and Western blot revealed that downregulation of MAPK and NF-κB pathways might contribute to the protective effects of imperatorin. CONCLUSIONS Imperatorin downregulated MAPK and NF-κB signaling pathways and exerted anti-inflammatory effects in ischemic stroke, which indicated that imperatorin might be a potential compound for the treatment of stroke.
Collapse
Affiliation(s)
- Jian-Wei Ge
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Shi-Ji Deng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Zhi-Wei Xue
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Pin-Yi Liu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Jiang-Nan Li
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Zhen Lan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
13
|
Li C, Wang N, Zheng G, Yang L. Oral Administration of Resveratrol-Selenium-Peptide Nanocomposites Alleviates Alzheimer's Disease-like Pathogenesis by Inhibiting Aβ Aggregation and Regulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46406-46420. [PMID: 34569225 DOI: 10.1021/acsami.1c14818] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with amyloid-β (Aβ) deposition, leading to neurotoxicity (oxidative stress and neuroinflammation) and gut microbiota imbalance. Resveratrol (Res) has neuroprotective properties, but its bioavailability in vivo is very low. Herein, we developed a small Res-selenium-peptide nanocomposite to enable the application of Res for eliminating Aβ aggregate-induced neurotoxicity and mitigating gut microbiota disorder in aluminum chloride (AlCl3) and d-galactose(d-gal)-induced AD model mice. Res functional selenium nanoparticles (Res@SeNPs) (8 ± 0.34 nm) were prepared first, after which the surface of Res@SeNPs was decorated with a blood-brain barrier transport peptide (TGN peptide) to generate Res-selenium-peptide nanocomposites (TGN-Res@SeNPs) (14 ± 0.12 nm). Oral administration of TGN-Res@SeNPs improves cognitive disorder through (1) interacting with Aβ and decreasing Aβ aggregation, effectively inhibiting Aβ deposition in the hippocampus; (2) decreasing Aβ-induced reactive oxygen species (ROS) and increasing activity of antioxidation enzymes in PC12 cells and in vivo; (3) down-regulating Aβ-induced neuroinflammation via the nuclear factor kappa B/mitogen-activated protein kinase/Akt signal pathway in BV-2 cells and in vivo; and (4) alleviating gut microbiota disorder, particularly with respect to oxidative stress and inflammatory-related bacteria such as Alistipes, Helicobacter, Rikenella, Desulfovibrio, and Faecalibaculum. Thus, we anticipate that Res-selenium-peptide nanocomposites will offer a new potential strategy for the treatment of AD.
Collapse
Affiliation(s)
- Changjiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|