1
|
Jabbari P, Yazdanpanah O, Benjamin DJ, Rezazadeh Kalebasty A. The Role of Ayurveda in Prostate Cancer Management. Integr Cancer Ther 2025; 24:15347354251330906. [PMID: 40156363 PMCID: PMC11954515 DOI: 10.1177/15347354251330906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
Ayurveda is commonly utilized in the treatment of medical ailments but has yet to gain traction in incorporation into allopathic medicine. Prostate cancer is the most common cancer among men and presents a significant public health burden across the globe. Despite advancements in the management of advanced prostate cancer including androgen deprivation therapy and novel hormonal therapies, men may eventually develop resistance to hormonal therapy. As such, there is an urgent need for novel therapeutic options in treating this malignancy. This review examines the pre-clinical evidence for Ayurveda medicinal plants such as Withania somnifera, Glycyrrhiza spp, Momordica spp, Boswellia, and Bacopa monnieri and their potential application in managing prostate cancer. Several in-vitro and pre-clinical studies suggest potentials for these plants or their derivatives in preventing or treating prostate cancers. Despite strong evidence of efficacy of these plants to potentially improve the outcome of prostate cancer, clinical trials are required to evaluate which plants may be most efficacious and to determine effective dosing strategies, as well as the use of ayurvedic plants as standalone therapies or in combination with conventional prostate cancer treatments.
Collapse
|
2
|
Liu J, Guo Y, Sun J, Lei Y, Guo M, Wang L. Extraction methods, multiple biological activities, and related mechanisms of Momordica charantia polysaccharide: A review. Int J Biol Macromol 2024; 263:130473. [PMID: 38423437 DOI: 10.1016/j.ijbiomac.2024.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.
Collapse
Affiliation(s)
- Jinshen Liu
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| | - Yuying Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Jie Sun
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Yuxin Lei
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Mingyi Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Linhong Wang
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| |
Collapse
|
3
|
Psilopatis I, Vrettou K, Giaginis C, Theocharis S. The Role of Bitter Melon in Breast and Gynecological Cancer Prevention and Therapy. Int J Mol Sci 2023; 24:ijms24108918. [PMID: 37240264 DOI: 10.3390/ijms24108918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Phytotherapy has long represented a widely accepted treatment alternative to conventional therapy. Bitter melon is a vine with potent antitumor effects against numerous cancer entities. To date, no review article has, however, been published on the role of bitter melon in breast and gynecological cancer prevention and therapy. The current work constitutes the most comprehensive, up-to-date review of the literature, which highlights the promising anticancer effects of bitter melon on breast, ovarian, and cervical cancer cells and discusses future research recommendations.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Trautenmuller AL, de Almeida Soares J, Behm KC, Guimarães LMM, Xavier-Silva KR, Monteiro de Melo A, Caixeta GAB, Abadia Marciano de Paula J, Luiz Cardoso Bailão EF, Amaral VCS. Cytotoxicity and maternal toxicity attributed to exposure to Momordica charantia L. (Cucurbitaceae) dry leaf extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:36-50. [PMID: 36529899 DOI: 10.1080/15287394.2022.2157354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Momordica charantia L. (Cucurbitaceae), popularly known as "bitter melon" or "bitter gourd," is a climbing plant well-adapted to tropical countries. This plant is used traditionally to treat several conditions including diabetes mellitus, inflammation, liver dysfunctions, and cancer. Given the widespread ethnopharmacological use, this study aimed to examine the cytogenetic, maternal, and developmental toxicity attributed to exposure to dry extract of M. charantia leaves using Allium cepa and Wistar rats as test models. First, phytochemical characterization of the dry extract by high performance liquid chromatography (HPLC) analyses was performed. Then, Allium cepa roots were exposed to three different concentrations of the dry extract (0.25, 0.5, or 1 mg/ml) to determine the mitotic index, frequency of chromosomal aberrations, and nuclear abnormalities. In addition, pregnant Wistar rats were administered either 500; 1,000 or 2,000 mg/kg dry extract during the gestational period (GD) days 6-15, and subsequently possible toxic effect on the dams and fetuses were recorded. HPLC analyses confirmed rutin as the main secondary metabolite present in the dry extract. In the Allium cepa test, the dry extract was cytotoxic. In Wistar rats, dry extract administration reduced water and feed intake and mean body mass gain, indicating maternal toxicity during the organogenesis period. However, the dry extract did not markedly affect reproductive outcome parameters evaluated. Regarding developmental toxicity assessment, the dry extract treatment did not significantly alter number of skeletal malformations in the offspring. Data demonstrated that the dry extract of M. charantia leaves presents cytotoxicity and low maternal toxicity, indicating indiscriminate use needs to be avoided.
Collapse
Affiliation(s)
- Ana Luisa Trautenmuller
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Jonathan de Almeida Soares
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Kamila Campos Behm
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | | | - Anielly Monteiro de Melo
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos da Biodiversidade, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | - Joelma Abadia Marciano de Paula
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos da Biodiversidade, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | | |
Collapse
|
5
|
Chao J, Chen TY, Pao LH, Deng JS, Cheng YC, Su SY, Huang SS. Ethnobotanical Survey on Bitter Tea in Taiwan. Front Pharmacol 2022; 13:816029. [PMID: 35250565 PMCID: PMC8894760 DOI: 10.3389/fphar.2022.816029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological evidence: In Taiwan, herbal tea is considered a traditional medicine and has been consumed for hundreds of years. In contrast to regular tea, herbal teas are prepared using plants other than the regular tea plant, Camellia sinensis (L.) Kuntze. Bitter tea (kǔ-chá), a series of herbal teas prepared in response to common diseases in Taiwan, is often made from local Taiwanese plants. However, the raw materials and formulations have been kept secret and verbally passed down by store owners across generations without a fixed recipe, and the constituent plant materials have not been disclosed. Aim of the study: The aim was to determine the herbal composition of bitter tea sold in Taiwan, which can facilitate further studies on pharmacological applications and conserve cultural resources. Materials and methods: Interviews were conducted through a semi-structured questionnaire. The surveyed respondents were traditional sellers of traditional herbal tea. The relevant literature was collated for a systematic analysis of the composition, characteristics, and traditional and modern applications of the plant materials used in bitter tea. We also conducted an association analysis of the composition of Taiwanese bitter tea with green herb tea (qing-cao-cha tea), another commonly consumed herbal tea in Taiwan, as well as herbal teas in neighboring areas outside Taiwan. Results: After visiting a total of 59 stores, we identified 32 bitter tea formulations and 73 plant materials. Asteraceae was the most commonly used family, and most stores used whole plants. According to a network analysis of nine plant materials used in high frequency as drug pairs, Tithonia diversifolia and Ajuga nipponensis were found to be the core plant materials used in Taiwanese bitter tea. Conclusion: Plant materials used in Taiwanese bitter tea were distinct, with multiple therapeutic functions. Further research is required to clarify their efficacy and mechanisms.
Collapse
Affiliation(s)
- Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Ting-Yang Chen
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| | - Shyh-Shyun Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| |
Collapse
|