1
|
Zhou Y, Nan F, Zhang Q, Xu W, Fang S, Liu K, Zhao B, Han H, Xie X, Qin C, Pang X. Natural products that alleviate depression: The putative role of autophagy. Pharmacol Ther 2024:108731. [PMID: 39426604 DOI: 10.1016/j.pharmthera.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a common mental disorder that severely disrupts psychosocial function and decreases the quality of life. Although the pathophysiological mechanism underlying MDD is complex and remains unclear, emerging evidence suggests that autophagy dysfunction plays a role in MDD occurrence and progression. Natural products serve as a major source of drug discovery and exert tremendous potential in developing antidepressants. Recently published reports are paying more attention on the autophagy regulatory effect of antidepressant natural products. In this review, we comprehensively discuss the abnormal changes occurred in multiple autophagy stages in MDD patients, and animal and cell models of depression. Importantly, we emphasize the regulatory mechanism of antidepressant natural products on disturbed autophagy, including monomeric compounds, bioactive components, crude extracts, and traditional Chinese medicine formulae. Our comprehensive review suggests that enhancing autophagy might be a novel approach for MDD treatment, and natural products restore autophagy homeostasis to facilitate the renovation of mitochondria, impede neuroinflammation, and enhance neuroplasticity, thereby alleviating depression.
Collapse
Affiliation(s)
- Yunfeng Zhou
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Fengwei Nan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qianwen Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wangjun Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shaojie Fang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ke Liu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bingxin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hao Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Xiaobin Pang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Guo J, Min D, Farrell EK, Zhou Y, Faingold CL, Cotten JF, Feng HJ. Enhancing the action of serotonin by three different mechanisms prevents spontaneous seizure-induced mortality in Dravet mice. Epilepsia 2024; 65:1791-1800. [PMID: 38593237 PMCID: PMC11166528 DOI: 10.1111/epi.17966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is an underestimated complication of epilepsy. Previous studies have demonstrated that enhancement of serotonergic neurotransmission suppresses seizure-induced sudden death in evoked seizure models. However, it is unclear whether elevated serotonin (5-HT) function will prevent spontaneous seizure-induced mortality (SSIM), which is characteristic of human SUDEP. We examined the effects of 5-HT-enhancing agents that act by three different pharmacological mechanisms on SSIM in Dravet mice, which exhibit a high incidence of SUDEP, modeling human Dravet syndrome. METHODS Dravet mice of both sexes were evaluated for spontaneous seizure characterization and changes in SSIM incidence induced by agents that enhance 5-HT-mediated neurotransmission. Fluoxetine (a selective 5-HT reuptake inhibitor), fenfluramine (a 5-HT releaser and agonist), SR 57227 (a specific 5-HT3 receptor agonist), or saline (vehicle) was intraperitoneally administered over an 8-day period in Dravet mice, and the effect of these treatments on SSIM was examined. RESULTS Spontaneous seizures in Dravet mice generally progressed from wild running to tonic seizures with or without SSIM. Fluoxetine at 30 mg/kg, but not at 20 or 5 mg/kg, significantly reduced SSIM compared with the vehicle control. Fenfluramine at 1-10 mg/kg, but not .2 mg/kg, fully protected Dravet mice from SSIM, with all mice surviving. Compared with the vehicle control, SR 57227 at 20 mg/kg, but not at 10 or 5 mg/kg, significantly lowered SSIM. The effect of these drugs on SSIM was independent of sex. SIGNIFICANCE Our data demonstrate that elevating serotonergic function by fluoxetine, fenfluramine, or SR 57227 significantly reduces or eliminates SSIM in Dravet mice in a sex-independent manner. These findings suggest that deficits in serotonergic neurotransmission likely play an important role in the pathogenesis of SSIM, and fluoxetine and fenfluramine, which are US Food and Drug Administration-approved medications, may potentially prevent SUDEP in at-risk patients.
Collapse
Affiliation(s)
- Jialing Guo
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Daniel Min
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emory K. Farrell
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yupeng Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carl L. Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Joseph F. Cotten
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Chen L, Jiang L, Shi X, Yang J, Wang R, Li W. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan. Front Pharmacol 2024; 15:1338024. [PMID: 38362144 PMCID: PMC10867185 DOI: 10.3389/fphar.2024.1338024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
4
|
Chen C, Xu YJ, Zhang SR, Wang XH, Hu Y, Guo DH, Zhou XJ, Zhu WY, Wen AD, Tan QR, Dong XZ, Liu P. MiR-1281 is involved in depression disorder and the antidepressant effects of Kai-Xin-San by targeting ADCY1 and DVL1. Heliyon 2023; 9:e14265. [PMID: 36938448 PMCID: PMC10020002 DOI: 10.1016/j.heliyon.2023.e14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Kai-Xin-San (KXS) is a Chinese medicine formulation that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. Recent studies indicated that miRNAs were involved in the pathophysiology of depression. However, there have been few studies on the mechanism underlying the miRNAs directly mediating antidepressant at clinical level, especially in nature drugs and TCM compound. In this study, we identified circulating miRNAs defferentially expressed among the depression patients (DPs), DPs who underwent 8weeks of KXS treatment and health controls (HCs). A total of 45 miRNAs (17 were up-regulated and 28 were down-regulated) were significantly differentially expressed among three groups. Subsequently, qRT-PCR was used to verify 10 differentially expressed candidate miRNAs in more serum samples, and the results showed that 6 miRNAs (miR-1281, miR-365a-3p, miR-2861, miR-16-5p, miR-1202 and miR-451a) were consistent with the results of microarray. Among them, miR-1281, was the novel dynamically altered and appeared to be specifically related to depression and antidepressant effects of KXS. MicroRNA-gene-pathway-net analysis showed that miR-1281-regulated genes are mostly key nodes in the classical signaling pathway related to depression. Additionally, our data suggest that ADCY1 and DVL1 were the targets of miR-1281. Thus, based on the discovery of miRNA expression profiles in vivo, our findings suggest a new role for miR-1281 related to depression and demonstrated in vitro that KXS may activate cAMP/PKA/ERK/CREB and Wnt/β-catenin signal transduction pathways by down-regulating miR-1281 that targets ADCY1 and DVL1 to achieve its role in neuronal cell protection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yuan-jie Xu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Shang-rong Zhang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Xiao-hui Wang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Dai-hong Guo
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiao-jiang Zhou
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Wei-yu Zhu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, People's Republic of China
- Corresponding author. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing 100053, China.
| | - Ping Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
- Corresponding author.Department of Pharmacy, the General Hospital of the People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
5
|
Bo M, Zhang H, Xu J, Zhao H, Jia X, Wang G, Lu Z. Systematic review of Kaixinsan in treating depression: Efficacy and pharmacological mechanisms. Front Behav Neurosci 2022; 16:1061877. [PMID: 36560929 PMCID: PMC9763288 DOI: 10.3389/fnbeh.2022.1061877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Kaixinsan (KXS) has been in use as an effective classic formulation of traditional Chinese medicine for depression. However, its active components and action mechanism against depression remain elusive. The purpose of this study was to summarize and evaluate the efficacy and potential pharmacological mechanisms of KXS in antidepressant treatment. Materials and methods Reports on the use of KXS in the treatment of depression were systematically collected from PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Chongqing VIP, and Wanfang Data from the establishment to July 2022, including those on mood disorders in neurological diseases such as Alzheimer's disease. Meta-analysis was conducted with the Review Manager 5.3 software. Online datasets, traditional Chinese medicine system pharmacological analysis platform, GeneCards, online Mendelian inheritance in man, and DisGeNET were used to investigate the depression-related genes. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments were performed to construct the 'component-target-pathways' network using Metascape online analyses. Result Ten studies were included in the analysis. Meta-analysis showed that both low-dose KXS (SMD = 19.66, Z = 7.96, and I 2 = 42%) and high-dose KXS (SMD = 23.84, Z = 8.46, and I 2 = 13%) could increase the sucrose preference in depression models. In addition, 5-hydroxytryptamine (5-HT) (SMD = 10.91, Z = 2.95, and I 2 = 50%) returned to normal level after the treatment at low dose KXS. In network pharmacology, 50 active components and 376 gene targets were screened out. AKT1, GAPDH, ALB, TNF, and TP53 were the core target proteins. GO analysis showed that KXS mainly treats depression in biological processes such as response to drugs, cellular calcium ion homeostasis, and regulation of chemical synaptic signal transmission. KEGG results show that the mechanism of action of KXS in treating depression is through neural activity ligand-receptor interaction, the calcium signaling and CAMP signaling pathways. Discussion The study reveals the active components and potential molecular mechanism of KXS in the treatment of depression and provides evidence for future basic research.
Collapse
Affiliation(s)
- Menghan Bo
- VIP Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjing Zhang
- Teaching Affairs Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Xu
- VIP Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhao
- Teaching Affairs Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinglei Jia
- VIP Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangdong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guangdong Wang,
| | - Zhengyu Lu
- VIP Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Zhengyu Lu,
| |
Collapse
|
6
|
F Guerreiro Costa LN, Carneiro BA, Alves GS, Lins Silva DH, Faria Guimaraes D, Souza LS, Bandeira ID, Beanes G, Miranda Scippa A, Quarantini LC. Metabolomics of Major Depressive Disorder: A Systematic Review of Clinical Studies. Cureus 2022; 14:e23009. [PMID: 35415046 PMCID: PMC8993993 DOI: 10.7759/cureus.23009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Although the understanding of the pathophysiology of major depressive disorder (MDD) has advanced greatly, this has not been translated into improved outcomes. To date, no biomarkers have been identified for the diagnosis, prognosis, and therapeutic management of MDD. Thus, we aim to review the biomarkers that are differentially expressed in MDD. A systematic review was conducted in January 2022 in the PubMed/MEDLINE, Scopus, Embase, PsycINFO, and Gale Academic OneFile databases for clinical studies published from January 2001 onward using the following terms: "Depression" OR "Depressive disorder" AND "Metabolomic." Multiple metabolites were found at altered levels in MDD, demonstrating the involvement of cellular signaling metabolites, components of the cell membrane, neurotransmitters, inflammatory and immunological mediators, hormone activators and precursors, and sleep controllers. Kynurenine and acylcarnitine were identified as consistent with depression and response to treatment. The most consistent evidence found was regarding kynurenine and acylcarnitine. Although the data obtained allow us to identify how metabolic pathways are affected in MDD, there is still not enough evidence to propose changes to current diagnostic and therapeutic actions. Some limitations are the heterogeneity of studies on metabolites, methods for detection, analyzed body fluids, and treatments used. The experiments contemplated in the review identified increased or reduced levels of metabolites, but not necessarily increased or reduced the activity of the associated pathways. The information acquired through metabolomic analyses does not specify whether the changes identified in the metabolites are a cause or a consequence of the pathology.
Collapse
Affiliation(s)
- Livia N F Guerreiro Costa
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Beatriz A Carneiro
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Gustavo S Alves
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Daniel H Lins Silva
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Daniela Faria Guimaraes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Lucca S Souza
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Igor D Bandeira
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Graziele Beanes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Angela Miranda Scippa
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Lucas C Quarantini
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| |
Collapse
|
7
|
Wang Y, Li X, Jing R, Yang W, Wang Y, Wang C, Yao L, Cui X, Hu Y. KXS Balances the Tryptophan Metabolism in Mild to Moderate Depressed Patients and Chronic Restraint Stress Induced Depressive Rats. Neuropsychiatr Dis Treat 2022; 18:2485-2496. [PMID: 36345420 PMCID: PMC9636882 DOI: 10.2147/ndt.s377982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/08/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Tryptophan metabolism is involved in the etiology and exacerbation of depressive disorders. Kai-Xin-San (KXS), a traditional Chinese medicine formula, has been widely used to treat depression and modulate serotonin simultaneously, but how it regulates depressive-like behavior by shifting the balance of the tryptophan-serotonin metabolism and kynurenine pathway remains vague. PATIENTS AND METHODS Ten participants with mild to moderate depression treated with KXS (KXS preparation) were analyzed in this study. Depression rating scale score and the concentration of serum tryptophan, 5-hydroxytryptophan and kynurenine was measured at baseline and the endpoint of KXS treatment. To explore the specific regulatory mechanism of KXS in tryptophan metabolism, the chronic restraint stress (CRS) was used to induce depressive-like syndrome in rats and the hippocampus level of tryptophan, 5-hydroxytryptophan, kynurenine with downstream metabolites (kynurenic acid, quinolinic acid) and key enzymes (indoleamine 2,3-dioxygenase, kynurenine 3-monooxygenase, kynurenine aminotransferase) were analyzed by liquid chromatography-electros pray ionization tandem mass spectrometry, high performance liquid chromatography and enzyme-linked immunosorbent assay respectively. RESULTS KXS significantly decreased depression rating scale scores and increased the serum tryptophan and kynurenine concentration in depressive patients compared to baseline. Also, it alleviated the depressive behavior in CRS rats obviously. Comparing with CRS group, KXS increased tryptophan, 5-hydroxytryptophan, kynurenine level in rat hippocampus. Furthermore, in kynurenine pathway, KXS decreased the expression of indoleamine 2,3-dioxygenase, increased kynurenic acid by upregulating the expression of kynurenine aminotransferase while decreased quinolinic acid level in hippocampus, which suggested that KXS more favored improving serotonin pathway, and neuroprotective kynurenic acid branch in the tryptophan metabolism. CONCLUSION This is the first tryptophan metabolomic study of patients with depression undergoing KXS treatment. Combining these clinical results with CRS induced rat model studies, it verified that KXS achieves an excellent antidepressant effect and balances tryptophan-kynurenine metabolic pathways by regulating some key metabolic products and enzymes.
Collapse
Affiliation(s)
- Yuanbo Wang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xia Li
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Rui Jing
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wenshan Yang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yichen Wang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Chaochen Wang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lei Yao
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiaoming Cui
- Department of Health Medicine, The Third Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|