1
|
Ni QC, Zhong RH, Yang Y, Li GT, Yang WJ, Zhou JY, Hu YY, Wu J, Zhu Y. Dan'e fukang decoction reduces hemorrhage in a rat model of mifepristone induced incomplete abortion and may correlate with cell adhesion molecule signaling interference. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118984. [PMID: 39461386 DOI: 10.1016/j.jep.2024.118984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan'e fukang decoction (DFD) is a traditional Chinese medicine formula. DFD obtains 10 herbs, including Salvia yunnanensis C.H.Wright (Zidanshen), Curcuma zedoaria (Christm.) Roscoe (Ezhu), Angelica sinensis (Oliv.) Diels (Danggui), Cyperus rotundus L. (Xiangfuzi), Corydalis yanhusuo (Y.H.Chou & Chun C. Hsu) W.T.Wang ex Z.Y.Su & C.Y.Wu, Bupleurum marginatum Wall. ex DC. (Yanhusuo), Sparganium stoloniferum (Buch.-Ham. ex Graebn.) Buch.-Ham. ex Juz. (Sanleng), Panax notoginseng (Burkill) F.H.Chen (Sanqi), Paeonia lactiflora Pall. (Shaoyao) and Glycyrrhiza uralensis Fisch. (Gancao). DFD is now clinically used for the treatment of menstrual irregularities, dysmenorrhea and menstrual discomfort caused by blood stasis and easing of endometriosis. Based on this, it is reasonable to presume that DFD may be effective in treating incomplete abortion and reducing postpartum bleeding, but no specific studies have been reported so far. AIM OF THE STUDY To investigate the efficacy of Dan'e fukang decoction (DFD) in reducing prolonged vaginal bleeding followed by mifepristone induced incomplete abortion and explore the mechanisms of action of DFD in treating incomplete abortion. METHODS An incomplete abortion model of rat was established by single intragastrically administered 8.5 mg/kg mifepristone on the 7th day of pregnancy. From the 8th day of pregnancy, the abortive rats were administered solvent, a positive control drug, or different doses of DFD, respectively for seven consecutive days. The efficacy of DFD was assessed by measuring the vaginal bleeding volume of the rats. Four coagulation parameters and platelet counts were measured. Hematoxylin and eosin (HE) staining was performed to evaluate pathological changes in the uterine embryos. Serum levels of progesterone and estrogen were measured using ELISA. Network pharmacology and transcriptomics were used to predict potential targets and pathways for DFD to reduce hemorrhage. The levels of mRNA related to cell adhesion molecules (CAMs) were detected by RT-qPCR. The levels of progesterone and estrogen receptors and the proteins associated with CAMs pathway in uterine tissues were detected by Western Blot. RESULTS DFD significantly reduced the volume of vaginal bleeding of the abortive rats and significantly downgraded the pathological scores of uterine embryos. DFD significantly increased serum levels of E2, and had no impact on serum levels of P4 and the protein expression of ER and PR in the uteri of the abortive rats. Pathways in cancer, lipid, focal adhesion and immune-related signaling were predicted to be influenced by DFD via the analysis of network pharmacology. The CAMs signaling was found the most critical pathway regulated by both mifepristone and DFD via RNA-seq assay, followed by axon guidance, basal cell carcinoma, hippo signaling pathway and neuroactive ligand-receptor interaction. Combining the two analytical methods, ICAM-1 was predicted likely the key targeted gene by DFD. Finally, DFD was validated to decrease the protein expression of ICAM-1, ITGB2, ITGB7 and RASSF5 in the uterine tissues, which correlated to suppress the CAMs signaling pathway. CONCLUSION DFD significantly reduced hemorrhage. DFD significantly increased the serum levels of E2 and inhibited CAMs signaling pathway, which was likely to be involved in the mechanism of action of DFD facilitating residual uterine embryo expulsion in the rat model of incomplete abortion.
Collapse
Affiliation(s)
- Qi-Cheng Ni
- Pharmacy School, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Rui-Hua Zhong
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Ye Yang
- Pharmacy School, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Guo-Ting Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Wen-Jie Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Jie-Yun Zhou
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Ying-Yi Hu
- Pharmacy School, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China
| | - Yan Zhu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China.
| |
Collapse
|
2
|
Sun Y, Li G, Kong M, Li J, Wang S, Tan Y. Angelica sinensis polysaccharide as potential protectants against recurrent spontaneous abortion: focus on autophagy regulation. Front Med (Lausanne) 2025; 12:1522503. [PMID: 39881843 PMCID: PMC11774876 DOI: 10.3389/fmed.2025.1522503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Introduction Recurrent spontaneous abortion (RSA) represents a significant clinical challenge, with its underlying mechanisms yet to be fully elucidated. Despite advances in understanding, the precise pathophysiology driving RSA remains unclear. Angelica sinensis, a traditional herbal remedy, is frequently used as an adjunctive treatment for miscarriage. However, it remains uncertain whether its primary active component, Angelica sinensis polysaccharide (ASP), plays a definitive role in its therapeutic effects. The specific function and mechanism of ASP in the context of RSA require further investigation. Methods In this study, we sought to evaluate autophagy levels at the maternal-fetal interface in RSA patients and in an RSA mouse model treated with ASP, complemented by a comprehensive metabolomic analysis. Autophagy flux in the decidua was compared between eight RSA patients and eight healthy pregnant women. Additionally, changes in autophagy flux were assessed in an RSA mouse model following ASP treatment, with embryos and placental tissues collected for subsequent metabolomic profiling. Results Our results revealed a significant reduction in Beclin 1 protein levels in the decidua of RSA patients compared to the normal pregnancy group. Conversely, ASP treatment in the RSA mouse model restored autophagy-related protein expression, including ATG7, ATG16L, and Beclin 1, to levels higher than those observed in the untreated RSA group. Metabolomic analyses further identified significant changes in phosphatidylethanolamine levels between ASP-treated and control groups, with differential metabolites enriched in pathways related to glycolysis/gluconeogenesis, glycerolipid metabolism, and glycine, serine, and threonine metabolism. Functional assays revealed that ASP enhances trophoblast cell proliferation, migration, and invasion. Conclusion In summary, our findings demonstrate diminished autophagy activity in RSA patients, while ASP appears to restore autophagy and regulate key metabolic pathways, including glycolysis/gluconeogenesis. These results provide new insights into the protective mechanisms of ASP in RSA, suggesting its potential as a therapeutic intervention for this condition.
Collapse
Affiliation(s)
- Yeli Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guohua Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Reproductive Immunology, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengwen Kong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyuan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuyun Wang
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Tan
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Liu Q, Tan L, Yuan L, Chen X, Li F, He J, Gao R. Subacute exposure to DEHP leads to impaired decidual reaction and exacerbates the risk of early miscarriage in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:331-341. [PMID: 38763769 PMCID: PMC11348695 DOI: 10.3724/zdxbyxb-2023-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/21/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES To investigate the effect of subacute exposure of Di (2-ethylhexyl) phthalate (DEHP) on endometrial decidualization and early pregnancy miscarriage in mice. METHODS CD1 mice were orally administrated with 300 (low-dose group), 1000 (medium-dose group), or 3000 mg·kg-1·d-1 DEHP (1/10 LD50, high-dose group) for 28 days, respectively. An early natural pregnancy model and an artificially induced decidualization model were established. The uterine tissues were collected on D7 of natural pregnancy and D8 of artificially induced decidualization, respectively. The effects of a subacute exposure to DEHP on the decidualization of mice were detected by HE staining, Masson staining, TUNEL assay, and Western blotting. A model of spontaneous abortion was constructed in mice after subacute exposure to 300 mg·kg-1·d-1 DEHP, and the effect of impaired decidualization on pregnancy was investigated by observing the pregnancy outcome on the 10th day of gestation. RESULTS Compared with the control group, the conception rate was significantly decreased in the high-dose DEHP subacute exposure group (P<0.05). HE staining showed that, compared with the control group, the decidual stromal cells in the low- and medium-dose exposure groups were disorganized, the nuclei of the cells were irregular, the cytoplasmic staining was uneven, and the number of polymorphonuclear cells was significantly reduced. Masson staining showed that compared with the control group, the collagen fibers in the decidua region of the DEHP low-dose group and the medium-dose group were more distributed, more abundant and more disorderly. TUNEL assay showed increased apoptosis in the decidua area compared to the control group. Western blotting showed that the expression of BMP2, a marker molecule for endometrial decidualization, was significantly reduced (P<0.05 or P<0.01). The abortion rate and embryo resorption rate were increased, and the number of embryos, uterine wet weight, uterine area and placenta wet weight were decreased in DEHP low-dose group compared to the control group stimulated by mifepristone, an abortifacient drug (P<0.05 or P<0.01). CONCLUSIONS Subacute exposure to DEHP leads to impaired endometrial decidualization during early pregnancy and exacerbates the risk of adverse pregnancy outcomes in mice.
Collapse
Affiliation(s)
- Qiuju Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China.
| | - Liping Tan
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Liu Yuan
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Bai FY, Bi SJ, Yue SJ, Xu DQ, Fu RJ, Sun Y, Sun XH, Tang YP. The serum lipidomics reveal the action mechanism of Danggui-Yimucao herbal pair in abortion mice. Biomed Chromatogr 2023; 37:e5717. [PMID: 37580977 DOI: 10.1002/bmc.5717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Medical abortion is a common medical procedure that women choose to terminate an unwanted pregnancy, but it often brings post-abortion complications. Danggui (Angelica sinensis Radix)-Yimucao (Leonuri Herba), as a herbal pair (DY) in clinical prescriptions of traditional Chinese medicine, is often used in the treatment of gynecological diseases and has the traditional functions of tonifying the blood, promoting blood circulation, removing blood stasis and regulating menstruation. In this study, serum lipidomics were adopted to dissect the mechanism of DY in promoting recovery after medical abortion. A total of 152 differential metabolites were screened by lipidomics. All metabolites were imported into MetaboAnalyst for analysis, and finally key metabolic pathways such as glycerophospholipid metabolism, linoleic acid metabolism and pentose and glucuronate interconversions were enriched. Our results indicated that metabolic disorders in abortion mice were alleviated by DY through glycerophospholipid metabolism, while prostaglandin and leukotriene metabolites might be the key targets of DY to promote post-abortion recovery.
Collapse
Affiliation(s)
- Feng-Yun Bai
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ying Sun
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Xiao-Hu Sun
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Zhao C, Wei X, Guo J, Ding Y, Luo J, Yang X, Li J, Wan G, Yu J, Shi J. Dose Optimization of Anxiolytic Compounds Group in Valeriana jatamansi Jones and Mechanism Exploration by Integrating Network Pharmacology and Metabolomics Analysis. Brain Sci 2022; 12:brainsci12050589. [PMID: 35624976 PMCID: PMC9138999 DOI: 10.3390/brainsci12050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Anxiety disorder impacts the quality of life of the patients. The 95% ethanol extract of rhizomes and roots of Valeriana jatamansi Jones (Zhi zhu xiang, ZZX) has previously been shown to be effective for the treatment of anxiety disorder. In this study, the dose ratio of each component of the anxiolytic compounds group (ACG) in a 95% ethanol extract of ZZX was optimized by a uniform design experiment and mathematical modeling. The anxiolytic effect of ACG was verified by behavioral experiments and biochemical index measurement. Network pharmacology was used to determine potential action targets, as well as predict biological processes and signaling pathways, which were then verified by molecular docking analysis. Metabolomics was then used to screen and analyze metabolites in the rat hippocampus before and after the administration of ZZX-ACG. Finally, the results of metabolomics and network pharmacology were integrated to clarify the anti-anxiety mechanism of the ACG. The optimal dose ratio of ACG in 95% ethanol extract of ZZX was obtained, and our results suggest that ACG may regulate ALB, AKT1, PTGS2, CYP3A4, ESR1, CASP3, CYP2B6, EGFR, SRC, MMP9, IGF1, and MAPK8, as well as the prolactin signaling pathway, estrogen signaling pathway, and arachidonic acid metabolism pathway, thus affecting the brain neurotransmitters and HPA axis hormone levels to play an anxiolytic role, directly or indirectly.
Collapse
Affiliation(s)
- Chengbowen Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Xiaojia Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
| | - Jianyou Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100083, China;
| | - Yongsheng Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
| | - Jing Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
| | - Xue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
| | - Jiayuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
| | - Guohui Wan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
| | - Jiahe Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
| | - Jinli Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (C.Z.); (X.W.); (Y.D.); (J.L.); (X.Y.); (J.L.); (G.W.); (J.Y.)
- Correspondence:
| |
Collapse
|
6
|
Bi SJ, Yue SJ, Bai X, Feng LM, Xu DQ, Fu RJ, Zhang S, Tang YP. Danggui-Yimucao Herb Pair Can Protect Mice From the Immune Imbalance Caused by Medical Abortion and Stabilize the Level of Serum Metabolites. Front Pharmacol 2021; 12:754125. [PMID: 34867365 PMCID: PMC8636897 DOI: 10.3389/fphar.2021.754125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Unintended pregnancy is a situation that every woman may encounter, and medical abortion is the first choice for women, but abortion often brings many sequelae. Angelica sinensis Radix (Danggui) and Leonuri Herba (Yimucao) are widely used in the treatment of gynecological diseases, which can regulate menstrual disorders, amenorrhea, dysmenorrhea, and promote blood circulation and remove blood stasis, but the mechanism for the treatment of abortion is not clear. We determined the ability of Danggui and Yimucao herb pair (DY) to regulate the Th1/Th2 paradigm by detecting the level of progesterone in the serum and the expression of T-bet and GATA-3 in the spleen and uterus. Then, we detected the level of metabolites in the serum and enriched multiple metabolic pathways. The arachidonic acid pathway can directly regulate the differentiation of Th1/Th2 cells. This may be one of the potential mechanisms of DY in the treatment of abortion.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Li-Mei Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Sai Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|