1
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Zhai Y, Zhang F, Zhou J, Qiao C, Jin Z, Zhang J, Wu C, Shi R, Huang J, Gao Y, Guo S, Wang H, Chai K, Zhang X, Wang T, Sheng X, Liu X, Wu J. Mechanism of norcantharidin intervention in gastric cancer: analysis based on antitumor proprietary Chinese medicine database, network pharmacology, and transcriptomics. Chin Med 2024; 19:129. [PMID: 39289763 PMCID: PMC11406961 DOI: 10.1186/s13020-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Combining antitumor proprietary Chinese medicine (pCm) with radiotherapy and chemotherapy can effectively improve tumor cure rates and enhance patients' quality of life. Gastric cancer (GC) severely endangers public health. Despite satisfactory therapeutic effects achieved by using antitumor pCm to treat GC, its underlying mechanism remains unclear. OBJECTIVE To integrate existing research data, construct a database of antitumor pCm, and study the intervention mechanisms in GC by focusing on their monomer components. METHODS We constructed an antitumor pCm database based on China's medical insurance catalog, and employed network pharmacology, molecular docking methods, cell experiments, transcriptomics, and bioinformatics to investigate the intervention mechanisms of effective pCm components for GC. RESULTS The study built an antitumor pCm database including 55 pCms, 171 Chinese herbal medicines, 1955 chemical components, 2104 targets, and 32 disease information. Network pharmacology and molecular docking technology identified norcantharidin as an effective component of antitumor pCm. In vitro experiments showed that norcantharidin effectively inhibited GC cell proliferation, migration, and invasion; blocked the G2/M cell cycle phase; and induced GC cell apoptosis. Transcriptomic results revealed that norcantharidin affected biological processes, such as cell adhesion, migration, and inflammatory responses by influencing PI3K-AKT, NF-κB, JAK-STAT, TNF-α signaling pathways, and EMT-related pathways. Core molecules of norcantharidin involved in GC intervention include SERPINE1, SHOX2, SOX4, PRDM1, TGFR3, TOX, PAX9, IL2RB, LAG3, and IL15RA. Additionally, the key target SERPINE1 was identified using bioinformatics methods. CONCLUSION Norcantharidin, as an effective component of anti-tumor pCm, exerts its therapeutic effects on GC by influencing biological processes such as cell adhesion, migration, and inflammation. This study provides a foundation and research strategy for the post-marketing re-evaluation of antitumor pCms.
Collapse
Affiliation(s)
- Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiying Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chuanqi Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengsen Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yifei Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haojia Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyan Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoguang Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinkui Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Huang J, Fan T, Rong Y, Li X, Jiang Q, Kan J, Qiu H, Quan Q, Zhang B, Guo G. Efficacy of Aidi injection combined with chemotherapy, radiotherapy or chemoradiotherapy for unresectable esophageal cancer treatment: A meta-analysis and systematic review of 29 randomized controlled trials based on Asian populations (China). Eur J Clin Pharmacol 2023; 79:707-722. [PMID: 37043012 DOI: 10.1007/s00228-023-03493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/01/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVES This study aimed to assess the efficacy of Aidi combined with standard treatment, including radiotherapy (R), chemotherapy (C), or chemoradiotherapy (CR), for unresectable esophageal cancer (EC). METHODS Eight online databases were queried to collect randomized controlled trials (RCTs) published from database construction to August 2022. Patients in the control group underwent standard treatment with R, C, or CR, whereas those in the experimental group underwent Aidi combined with standard treatment. RESULTS In this meta-analysis, 29 reports with 2079 patients were included. The results showed that the Aidi-based combination therapy groups had higher objective response rates (ORRs), disease control rates (DCRs), one-year overall survival (OS) and improvement and stability of Karnofsky performance status (KPS) than the control group (risk ratio (RR) = 1.24 (95% CI = 1.17-1.33), 1.09 (95% CI = 1.05-1.14), 1.50 (95% CI = 1.31-1.72), and 1.28 (95% CI = 1.16-1.41)). The Aidi-based combination therapy groups also had lower total incidence rates of bone marrow suppression (BMS), chemotherapy-induced nausea and vomiting (CINV) and radiation esophagitis (RE) than the control group (RR = 0.48 (95% CI = 0.41-0.56), 0.46 (95% CI = 0.36-0.58), and 0.49 (95% CI = 0.38-0.62)). In addition, subgroup analysis suggested that the optimal dose and cycle of Aidi injection combined therapy was 80-100 ml/time and 30 days/2 cycles. The efficacy of Aidi combined with DP (docetaxel + cisplatin) was better than the Aidi combined with PF (cisplatin plus fluorouracil). CONCLUSION Aidi-based combination therapy showed high efficacy for unresectable EC treatment and reduced the incidence rates of adverse events. However, further studies including higher-quality RCTs are needed to validate these findings. TRIAL REGISTRATION NUMBER INPLASY 202290020.
Collapse
Affiliation(s)
- Jinsheng Huang
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Teng Fan
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yuming Rong
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xujia Li
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qi Jiang
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jun Kan
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Huijuan Qiu
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qi Quan
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Bei Zhang
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Guifang Guo
- VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
4
|
Lu Y, Zhang S, Zhu X, Wang K, He Y, Liu C, Sun J, Pan J, Zheng L, Liu W, Li Y, Huang Y, Liu T. Aidi injection enhances the anti-tumor impact of doxorubicin in H22 tumor-containing mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115968. [PMID: 36473617 DOI: 10.1016/j.jep.2022.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aidi injection (AD) is a traditional medical preparation that has a Chinese origin. It is extensively used particularly in combination with doxorubicin (DOX) for the management of hepatocellular carcinoma (HCC). However, the combination's synergistic mechanism has not yet been clarified. AIM OF THE STUDY To investigate the anti-tumor impact of AD in combination with DOX and their synergistic mechanism in HCC. MATERIALS AND METHODS An H22 mouse xenograft model was utilized to study the impact of AD, DOX, and their combination on HCC in vivo. Their effects on cell vitality, apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) production, caspase-3, and cleaved caspase-3 protein expression were also investigated in H22 cells in vitro. Subsequently, human umbilical vein endothelial cells (HUVECs) were utilized to investigate the impacts of AD, DOX, and their combination on cell viability, migration, invasion, tube formation, and vascular endothelial growth factor (VEGF) protein expression. RESULTS The study established that the tumor inhibition rate of AD combined with DOX reached 79.51%, which was significantly higher than that of AD (25.14%) or DOX (49.48%) alone. Additionally, the Q-value characterizing the synergy between AD and DOX was 1.72, demonstrating a strong synergistic effect. Furthermore, compared to AD or DOX administration alone, the combined administration group significantly decreased the alpha-fetoprotein (AFP) level in the serum, increased the tumor necrosis area, increased the Bax/Bcl-2, Cyt-c, caspase-9, Fas, Fasl, caspase-8, and caspase-3 protein expression, and significantly increased the CD31 and Ki67 protein expression in tumor tissue. Compared to AD or DOX alone, AD combined with DOX treatment had a synergistic effect on H22 cells (combination index values < 0.9), which inhibited cell viability, reduced mitochondrial membrane potential (MMP), induced apoptosis, promoted MMP loss, and increased ROS generation, cleaved caspase-3/caspase-3 levels, and caspase-3 activity. Moreover, combined administration showed a more pronounced inhibition of cell viability, migration, invasion, tube formation, and VEGF protein expression in HUVECs. CONCLUSIONS AD enhances the anti-tumor effect of DOX by promoting apoptosis and inhibiting angiogenesis and cell proliferation. The findings of this study lay experimental foundations for the clinical combination of AD and DOX.
Collapse
Affiliation(s)
- Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China; The Affiliated Hospital of Guizhou Medical University, 28# Guiyi Road, Guiyang, 550004, Guizhou, China
| | - Shuai Zhang
- The Affiliated Hospital of Guizhou Medical University, 28# Guiyi Road, Guiyang, 550004, Guizhou, China
| | - Xiaoqin Zhu
- School of Pharmacy, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Kailiang Wang
- School of Pharmacy, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yan He
- The Affiliated Hospital of Guizhou Medical University, 28# Guiyi Road, Guiyang, 550004, Guizhou, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Wen Liu
- The Affiliated Hospital of Guizhou Medical University, 28# Guiyi Road, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yongjun Li
- School of Pharmacy, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
5
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
6
|
Hepatic, Extrahepatic and Extracellular Vesicle Cytochrome P450 2E1 in Alcohol and Acetaminophen-Mediated Adverse Interactions and Potential Treatment Options. Cells 2022; 11:cells11172620. [PMID: 36078027 PMCID: PMC9454765 DOI: 10.3390/cells11172620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol and several therapeutic drugs, including acetaminophen, are metabolized by cytochrome P450 2E1 (CYP2E1) into toxic compounds. At low levels, these compounds are not detrimental, but higher sustained levels of these compounds can lead to life-long problems such as cytotoxicity, organ damage, and cancer. Furthermore, CYP2E1 can facilitate or enhance the effects of alcohol-drug and drug-drug interactions. In this review, we discuss the role of CYP2E1 in the metabolism of alcohol and drugs (with emphasis on acetaminophen), mediating injury/toxicities, and drug-drug/alcohol-drug interactions. Next, we discuss various compounds and various nutraceuticals that can reduce or prevent alcohol/drug-induced toxicity. Additionally, we highlight experimental outcomes of alcohol/drug-induced toxicity and potential treatment strategies. Finally, we cover the role and implications of extracellular vesicles (EVs) containing CYP2E1 in hepatic and extrahepatic cells and provide perspectives on the clinical relevance of EVs containing CYP2E1 in intracellular and intercellular communications leading to drug-drug and alcohol-drug interactions. Furthermore, we provide our perspectives on CYP2E1 as a druggable target using nutraceuticals and the use of EVs for targeted drug delivery in extrahepatic and hepatic cells, especially to treat cellular toxicity.
Collapse
|
7
|
An P, Lu D, Zhang L, Lan H, Yang H, Ge G, Liu W, Shen W, Ding X, Tang D, Zhang W, Luan X, Cheng H, Zhang H. Synergistic antitumor effects of compound-composed optimal formula from Aidi injection on hepatocellular carcinoma and colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154231. [PMID: 35691079 DOI: 10.1016/j.phymed.2022.154231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Traditional Chinese medicine formula (TCMF) possesses unique advantages in the prevention and treatment of malignant tumors such as hepatocellular carcinoma (HCC) and colorectal cancer (CRC). However, the unclear chemical composition and mechanism lead to its unstable efficacy and adverse reactions occurring frequently, especially injection. We previously proposed the research idea and strategy for compound-composed Chinese medicine formula (CCMF). PURPOSE A demonstration study was performed through screening of the compound-composed optimal formula (COF) from Aidi injection, confirmation of the synergistic effect, and exploration of the related mechanism in the treatment of HCC and CRC. METHOD The feedback system control (FSC) technique was applied to screening of COF. CCK-8 and calcein-AM/PI assays were performed to evaluate cell proliferation. Cell apoptosis was assessed using flow cytometry and DAPI staining. JC-1 probe and mitochondrial staining were employed to detect mitochondrial membrane potential (MMP) and the release of cytochrome c into cytoplasm, respective. Quantitative proteomics, drug affinity responsive target stability (DARTS) assay, bioinformatics, and molecular docking were carried out to explore the targets of the compounds and the synergistic mechanism involved. RESULTS COF was obtained from Aidi injection, which comprises cantharidin (CAN): calycosin-7-O-β-D-glucoside (CAG): ginsenoside Rc: ginsenoside Rd = 1:12:12:8 (molar ratio). The monarch drug CAN in combination with minister medicines consisting of CAG, Rc and Rd (abbr. TD) displayed evidently synergistic effect, which inhibited cell viability, increased dead cell number, induced apoptosis, reduced MMP, promoted cytochrome c leakage of HCC and CRC cells, and suppressed the increases of tumor volume and weight in HCC and CRC bearing nude mice. TD probably antagonized CAN enhanced activity of the ubiquitin proteasome system (UPS) to depress the degradation of cytotoxic proteins through binding to ubiquitin proteasome, thus exerting the synergistic effect with CAN activated protein phosphatase 2A (PP2A) to activate the mitochondrial apoptosis pathway. In addition, the CAN enhanced protein expression of UPS was also observed for the first time. CONCLUSION CAN and TD exert synergism through activation of PP2A and inhibition of UPS. It makes sense to elucidate the scientific nature of the compatibility theory of TCMF based on CCMF, which will be an important research direction of the modernization of traditional Chinese medicines.
Collapse
Affiliation(s)
- Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Haiyue Lan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Hongxuan Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dongxin Tang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China.
| | - Hong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
8
|
Wang Y, Zhu X, Wang K, Cai Y, Liu C, Pan J, Sun J, Liu T, Huang Y, Li Y, Lu Y. Cell Metabolomics Study on Synergistic anti-Hepatocellular Carcinoma Effect of Aidi Injection Combined with Doxorubicin. Biomed Chromatogr 2022; 36:e5451. [PMID: 35848595 DOI: 10.1002/bmc.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the second most common cause of cancer deaths. This study aimed to explore the inhibitory effect and mechanism of Aidi injection (ADI) combined with doxorubicin (DOX) in HCC treatment. The drug concentrations in combined threapy was determined by investigating the effect of various concentrations of ADI and DOX on the viability of H22 cells. The combination index (CI) was also calculated. A metabolomic strategy based on ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) platform was established to analyze the metabolites. As a result, the CI values were less than 1, indicating that the combination of ADI and DOX exerted a synergistic effect on HCC treatment. The combination of 40‰ ADI and 1 μmol/L DOX had the strongest inhibitory effect and was used for subsequent metabolomic analysis. A total of 19 metabolic markers were obtained in metabolomic analysis, including amino acids (L-glutamic acid, L-arginine, and L-tyrosine), organic acids (succinic acid and citric acid), adenosine, and hypoxanthine , etc. Compared with the treatment using DOX or ADI alone, the combined therapy further regulated the levels of metabolic markers in HCC, which may be the reason for the synergistic effect. Seven metabolic pathways were significantly enriched, including phenylalanine, tyrosine and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, and purine metabolism. These findings demonstrated that ADI combined with DOX can effectively inhibit the viability of H22 cells, which may exert a synergistic anti-tumor effect by balancing the metabolism of amino acids and energy-related substances.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaoqing Zhu
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Kailiang Wang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ying Cai
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|