1
|
Mangalpady SS, Peña-Corona SI, Borbolla-Jiménez F, Kaverikana R, Shetty S, Shet VB, Almarhoon ZM, Calina D, Leyva-Gómez G, Sharifi-Rad J. Arnicolide D: a multi-targeted anticancer sesquiterpene lactone-preclinical efficacy and mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6317-6336. [PMID: 38652277 DOI: 10.1007/s00210-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Arnicolide D, a potent sesquiterpene lactone from Centipeda minima, has emerged as a promising anticancer candidate, demonstrating significant efficacy in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis across various cancer models. This comprehensive study delves into the molecular underpinnings of Arnicolide D's anticancer actions, emphasizing its impact on key signaling pathways such as PI3K/AKT/mTOR and STAT3, and its role in modulating cell cycle and survival mechanisms. Quantitative data from preclinical studies reveal Arnicolide D's dose-dependent cytotoxicity against cancer cell lines, including nasopharyngeal carcinoma, triple-negative breast cancer, and human colon carcinoma, showcasing its broad-spectrum anticancer potential. Given its multifaceted mechanisms and preclinical efficacy, Arnicolide D warrants further investigation in clinical settings to validate its therapeutic utility against cancer. The evidence presented underscores the need for rigorous pharmacokinetic and toxicological studies to establish safe dosing parameters for future clinical trials.
Collapse
Affiliation(s)
- Shivaprasad Shetty Mangalpady
- Department of Chemistry, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Nitte, Mangaluru, India
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Fabiola Borbolla-Jiménez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Rajesh Kaverikana
- Department of Pharmacology, NGSM Institute of Pharmaceuticals, Nitte (Deemed to Be University), Mangaluru, India
| | - Shobhitha Shetty
- Department of Chemistry, A.J. Institute of Engineering & Technology, Mangaluru, India
| | - Vinayaka Babu Shet
- Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Mangaluru, India
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | | |
Collapse
|
2
|
Chen YF, Pang YC, Wang HC, Wu PE, Chen ZJ, Huang D, Peng DL, Yan YM, Liu C, Wu LC, Fan XZ, Cheng YX, Liu YQ. Identification of arnicolide C as a novel chemosensitizer to suppress mTOR/E2F1/FANCD2 axis in non-small cell lung cancer. Br J Pharmacol 2024; 181:1221-1237. [PMID: 37926864 DOI: 10.1111/bph.16281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The mammalian target of rapamycin (mTOR) pathway plays critical roles in intrinsic chemoresistance by regulating Fanconi anaemia complementation group D2 (FANCD2) expression. However, the mechanisms by which mTOR regulates FANCD2 expression and related inhibitors are not clearly elucidated. Extracts of Centipeda minima (C. minima) showed promising chemosensitizing effects by inhibiting FANCD2 activity. Here, we have aimed to identify the bioactive chemosensitizer in C. minima extracts and elucidate its underlying mechanism. EXPERIMENTAL APPROACH The chemosensitizing effects of arnicolide C (ArC), a bioactive compound in C. minima, on non-small cell lung cancer (NSCLC) were investigated using immunoblotting, immunofluorescence, flow cytometry, the comet assay, small interfering RNA (siRNA) transfection and animal models. The online SynergyFinder software was used to determine the synergistic effects of ArC and chemotherapeutic drugs on NSCLC cells. KEY RESULTS ArC had synergistic cytotoxic effects with DNA cross-linking drugs such as cisplatin and mitomycin C in NSCLC cells. ArC treatment markedly decreased FANCD2 expression in NSCLC cells, thus attenuating cisplatin-induced FANCD2 nuclear foci formation, leading to DNA damage and apoptosis. ArC inhibited the mTOR pathway and attenuated mTOR-mediated expression of E2F1, a critical transcription factor of FANCD2. Co-administration of ArC and cisplatin exerted synergistic anticancer effects in the A549 xenograft mouse model by suppressing mTOR/FANCD2 signalling in tumour tissues. CONCLUSION AND IMPLICATIONS ArC suppressed DNA cross-linking drug-induced DNA damage response by inhibiting the mTOR/E2F1/FANCD2 signalling axis, serving as a chemosensitizing agent. This provides insight into the anticancer mechanisms of ArC and offers a potential combinatorial anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu-Fei Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Yan-Chun Pang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Han-Chen Wang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Pei-En Wu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Zi-Jie Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Da Huang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Dong-Ling Peng
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changhui Liu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
| | - Li-Chuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Xiang-Zhen Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
3
|
Liu Z, Lyu X, Chen J, Zhang B, Xie S, Yuan Y, Sun L, Yuan S, Yu H, Ding J, Yang M. Arnicolide C Suppresses Tumor Progression by Targeting 14-3-3θ in Breast Cancer. Pharmaceuticals (Basel) 2024; 17:224. [PMID: 38399439 PMCID: PMC10892132 DOI: 10.3390/ph17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Arnicolide C, which is isolated from Centipeda minima, has excellent antitumor effects. However, the potential impacts and related mechanisms of action of arnicolide C in breast cancer remain unknown. Methods: The viability of breast cancer cells was measured using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony formation assays. For analysis of apoptosis and the cell cycle, flow cytometry was used. A molecular docking approach was used to explore the possible targets of arnicolide C. Western blot analysis was used to detect changes in the expression of 14-3-3θ and proteins in related pathways after arnicolide C treatment in breast cancer cells. The anti-breast cancer effect of arnicolide C in vivo was evaluated by establishing cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Results: Arnicolide C inhibited proliferation, increased apoptosis, and induced G1 arrest. In particular, molecular docking analysis indicated that arnicolide C binds to 14-3-3θ. Arnicolide C reduced 14-3-3θ expression and inhibited its downstream signaling pathways linked to cell proliferation. Similar results were obtained in the CDX and PDX models. Conclusion: Arnicolide C can have an anti-breast cancer effect both in vitro and in vivo and can induce cell cycle arrest and increase apoptosis in vitro. The molecular mechanism may be related to the effect of arnicolide C on the expression level of 14-3-3θ. However, the specific mechanism through which arnicolide C affects 14-3-3θ protein expression still needs to be determined.
Collapse
Affiliation(s)
- Zhengrui Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodan Lyu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaxu Chen
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Benteng Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Siman Xie
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Yuan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jian Ding
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Chen Z, Ni R, Hu Y, Yang Y, Tian Y. Arnicolide D Inhibits Proliferation and Induces Apoptosis of Osteosarcoma Cells through PI3K/Akt/mTOR Pathway. Anticancer Agents Med Chem 2024; 24:1288-1294. [PMID: 38967079 DOI: 10.2174/0118715206289595240105082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine Centipeda minima (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear. OBJECTIVE This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS. METHODS Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms. RESULTS Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells. CONCLUSION Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Renhua Ni
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yiyuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
5
|
Liu J, Zheng W, He Y, Zhang W, Luo Z, Liu X, Jiang X, Meng F, Wu L. A Review of the Research Applications of Centipeda minima. Molecules 2023; 29:108. [PMID: 38202691 PMCID: PMC10779596 DOI: 10.3390/molecules29010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Centipeda minima is a traditional Chinese medicine with wide applications and diverse pharmacological effects. Scholars have conducted extensive studies on its relevant clinical applications, especially its remarkable efficacy in cancer treatment. This paper thoroughly investigates the chemical composition and identification, pharmacological effects, and toxicity, along with the safety of Centipeda minima, so as to lay the foundation for corresponding clinical applications and product development. Furthermore, as global scholars have conducted extensive research on such clinical applications and made significant progress, the future development and utilization of Centipeda minima's active ingredients to create novel drugs are of great clinical significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liyan Wu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519000, China; (J.L.); (W.Z.); (Y.H.); (W.Z.); (Z.L.); (X.L.); (X.J.); (F.M.)
| |
Collapse
|
6
|
Meng M, Tan J, Chen H, Shi Z, Kwan HY, Su T. Brevilin A exerts anti-colorectal cancer effects and potently inhibits STAT3 signaling invitro. Heliyon 2023; 9:e18488. [PMID: 37593607 PMCID: PMC10432182 DOI: 10.1016/j.heliyon.2023.e18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related morbidity worldwide, with an estimated of 1.85 million new cases and 850,000 deaths every year. Nevertheless, the current treatment regimens for CRC have many disadvantages, including toxicities and off-targeted side effects. STAT3 (signal transducer and activator of transcription 3) has been considered as a promising molecular target for CRC therapy. Brevilin A, a sesquiterpene lactone compound rich in Centipedae Herba has potent anticancer effects in nasopharyngeal, prostate and breast cancer cells by inhibiting the STAT3 signaling. However, the anti-CRC effect of brevilin A and the underlying mechanism of action have not been fully elucidated. In this study, we aimed to investigate the involvement of STAT3 signaling in the anti-CRC action of brevilin A. Here, HCT-116 and CT26 cell models were used to investigate the anti-CRC effects of brevilin A in vitro. HCT-116 cells overespressing with STAT3 were used to evaluate the involvement of STAT3 signaling in the anti-CRC effect of brevilin A. Screening of 49 phosphorylated tyrosine kinases in the HCT-116 cells after brevilin A treatment was performed by using the human phospho-receptor tyrosine kinase (phospho-RTK) array. Results showed that brevilin A inhibited cell proliferation and cell viability, induced apoptosis, reduced cell migration and invasion, inhibited angiogenesis, lowered the protein expression levels of phospho-Src (Tyr416), phospho-JAK2 (Y1007/1008) and phospho-STAT3 (Tyr705), and inhibited STAT3 activation and nuclear localization. Brevilin A also significantly reduced the protein expression levels of STAT3 target genes, such as MMP-2, VEGF and Bcl-xL. More importantly, over-activation of STAT3 diminished brevilin A's effects on cell viability. All these results suggest that brevilin A exerts potent anti-CRC effects, at least in part, by inhibiting STAT3 signaling. Our findings provide a strong pharmacological basis for the future exploration and development of brevilin A as a novel STAT3-targeting phytotherapeutic agent for CRC treatment.
Collapse
Affiliation(s)
- Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jincheng Tan
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Chen
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqiang Shi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hiu-Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, China
| |
Collapse
|
7
|
Gao C, Pan H, Ma F, Zhang Z, Zhao Z, Song J, Li W, Fan X. Centipeda minima active components and mechanisms in lung cancer. BMC Complement Med Ther 2023; 23:89. [PMID: 36959600 PMCID: PMC10035269 DOI: 10.1186/s12906-023-03915-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been extensively used for neoplasm treatment and has provided many promising therapeutic candidates. We previously found that Centipeda minima (C. minima), a Chinese medicinal herb, showed anti-cancer effects in lung cancer. However, the active components and underlying mechanisms remain unclear. In this study, we used network pharmacology to evaluate C. minima active compounds and molecular mechanisms in lung cancer. METHODS We screened the TCMSP database for bioactive compounds and their corresponding potential targets. Lung cancer-associated targets were collected from Genecards, OMIM, and Drugbank databases. We then established a drug-ingredients-gene symbols-disease (D-I-G-D) network and a protein-protein interaction (PPI) network using Cytoscape software, and we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using R software. To verify the network pharmacology results, we then performed survival analysis, molecular docking analysis, as well as in vitro and in vivo experiments. RESULTS We identified a total of 21 C. minima bioactive compounds and 179 corresponding targets. We screened 804 targets related to lung cancer, 60 of which overlapped with C. minima. The top three candidate ingredients identified by D-I-G-D network analysis were quercetin, nobiletin, and beta-sitosterol. PPI network and core target analyses suggested that TP53, AKT1, and MYC are potential therapeutic targets. Moreover, molecular docking analysis confirmed that quercetin, nobiletin, and beta-sitosterol, combined well with TP53, AKT1, and MYC respectively. In vitro experiments verified that quercetin induced non-small cell lung cancer (NSCLC) cell death in a dose-dependent manner. GO and KEGG analyses found 1771 enriched GO terms and 144 enriched KEGG pathways, including a variety of cancer related pathways, the IL-17 signaling pathway, the platinum drug resistance pathway, and apoptosis pathways. Our in vivo experimental results confirmed that a C. minima ethanol extract (ECM) enhanced cisplatin (CDDP) induced cell apoptosis in NSCLC xenografts. CONCLUSIONS This study revealed the key C. minima active ingredients and molecular mechanisms in the treatment of lung cancer, providing a molecular basis for further C. minima therapeutic investigation.
Collapse
Affiliation(s)
- Cuiyun Gao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengjun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ze Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zedan Zhao
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jialing Song
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiangzhen Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|