1
|
Zong W, Tian S, Niu Q, Li X, Wang P, Tong L, Zhang S, Zheng D, Zhang Y, Xiong W, Cai Q, Zeng Z, Wang J, Xu H, Zhang H, Li B. Comparable clinical advantages identification of three formulae on rheumatic disease using a modular-based network proximity approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118764. [PMID: 39218127 DOI: 10.1016/j.jep.2024.118764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal formulae have been used in China for thousands of years but have unclear clinical positioning and unknown characteristic indications make it difficult to determine their specific application in various diseases, which seriously hamper their clinical value. Identifying the precise clinical positioning and clinical advantages of similar formulae for related diseases is a critical issue. AIM OF THIS STUDY To develop a methodology based on modular pharmacology to determine the clinical advantages and precise clinical position of similar formulae. MATERIALS AND METHODS In this study, we proposed a modular-based network proximity approach to explore drug repositioning and clinical advantages of three formulae, Shirebi tablets (SRB), Yuxuebi capsules (YXB), and Wangbifukang granules (WBFK), for rheumatic disease. First, we constructed a rheumatology target network, and modules were obtained using the cluster tool molecular complex detection (MCODE). Based on the modular interaction map established by a quantitative approach for inter-module coordination and its transition (IMCC), using a targeting rate (TR) matrix to identify targeted modules of three formulae. Moreover, the network proximity Z-score and Jaccard similarity coefficient were used to identify potential optimal symptomatic indications and related diseases using three formulae. At the same time, the driver genes for SRB and gouty arthritis were identified by flow centrality and shortest distance, and the epresentative driver genes were validated by in vivo experiments. RESULTS 32 modules were obtained using the MCODE method. 4, 4, and 14 characteristic targeted modules of SRB, YXB, and WBFK, respectively, were identified using a targeting rate (TR) matrix. Module 2, 16, and 19 were targeted by both SRB and WBFK. The common effects of SRB and WBFK focused on inflammatory response and innate immune response, YXB was found to be involved in the collagen catabolic process, transmembrane receptor protein serine/threonine kinase signaling pathway. Moreover, potential optimal symptomatic indications and representative related diseases were identified for three formulae: SRB was significantly associated with GA (Z = -20.26); YXB was significantly associated with AS (Z = -4.532), MI (Z = -29.11), RhFv (Z = -6.945), OA (Z = -39.97), and GA (Z = -13.03); and WBFK was significantly associated with MI (Z = -205.5), SLE (Z = -37.65), RhFv (Z = -42.45), and GA (Z = -17.24). Finally, 8 driver genes for SRB and gouty arthritis were identified,the representative driver genes TRAF6 and NFE2L1 were validated by in vivo experiments. CONCLUSIONS The modular-based network proximity approach proposed in this study may provide a new perspective for the precise drug repositioning and clinical advantages of similar formulae in disease treatment.
Collapse
Affiliation(s)
- Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Siwei Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Tong
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Danping Zheng
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiong
- Peking Union Medical College Hospital, Beijing, 100005, China
| | - Qiujie Cai
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ziling Zeng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing'ai Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huamin Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Tang W, Li X, Liu H, Xu C, Deng S. The role of macrophages in chronic pain. Cytokine 2025; 185:156813. [PMID: 39577336 DOI: 10.1016/j.cyto.2024.156813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Chronic pain typically lasts or recurs for more than three months and is an unpleasant sensory and emotional experience, including neuropathic pain, long-term tissue damage, tumors, and viral or bacterial infections.The unpleasantness associated with pain affects the basic life of patients and has become a truly global problem. Macrophages, a powerful immune effector cell whose functional plasticity leads to polarization into different subtypes and opposite effects in different environments, are also indispensable in the development of pain.In recent years, there has been an increasing number of studies on the effects of macrophages on pain, and there are multiple pathways that regulate macrophage polarization, including lipopolysaccharide induction and IL-4/IL-13 stimulation.In addition, pathways involving macrophages and macrophage polarization have been found to have an exacerbating or mitigating role in the progression of chronic pain, with M1 macrophages generally exacerbating pain progression and M2 macrophages mitigating pain progression.Therefore, modulating macrophage polarization holds great promise as an intervention in chronic pain. In this paper, we synthesize multiple macrophage pathways as well as mechanisms affecting their pain processes in the context of different types of chronic pain, providing new avenues for chronic pain relief.
Collapse
Affiliation(s)
- Weikang Tang
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Xuan Li
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Huixia Liu
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Chunyan Xu
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Siyao Deng
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China..
| |
Collapse
|
3
|
Liu Y, Zhang G, Zhu C, Yao X, Wang W, Shen L, Wang H, Lin N. The analgesic effects of Yu-Xue-Bi tablet (YXB) on mice with inflammatory pain by regulating LXA4-FPR2-TRPA1 pathway. Chin Med 2024; 19:104. [PMID: 39107849 PMCID: PMC11302111 DOI: 10.1186/s13020-024-00975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Oxylipins including lipoxin A4 (LXA4) facilitate the resolution of inflammation and possess analgesic properties by inhibiting macrophage infiltration and transient receptor potential (TRP) protein expression. Yu-Xue-Bi Tablet (YXB) is a traditional Chinese patent medicine used to relieve inflammatory pain. Our previous research has shown that the analgesic effect of YXB is related to inhibiting peripheral inflammation and regulating macrophage infiltration, but the mechanism is not yet clear. The purpose of this study is to explore the mechanisms of YXB on mice models with Complete Freund's Adjuvant (CFA)-induced inflammatory pain from the perspective at the resolution of inflammation. METHODS Mechanical allodynia thresholds and heat hypersensitivity were measured using the Von Frey test and the hot plate test respectively. The open field test and the tail suspension test were employed to measure anxiety and depressive behaviors respectively. The expression of CD68+ and the proportion of F4/80+CD11b+ cells were measured by immunofluorescence staining and flow cytometry. The expression of transient receptor potential ankyrin 1(TRPA1) was measured by immunofluorescence staining and western blotting. Oxylipins omics analysis provided quantitative data on oxylipins in the paws, and enzyme linked immunosorbent assay (ELISA) was used to measure the levels of LXA4 there. Immunofluorescence staining was used to perform the expression of Leukotriene A4 hydroxylase (LTA4H) in the paws of mice. The impact of injecting the formyl peptide receptor 2(FPR2) antagonist WRW4 and the TRPA1 agonist AITC into the left paws was observed, focusing on the expression of mechanical allodynia thresholds, the expression of CD68+, TRPA1 in the paws, and Calcitonin gene-related peptide (CGRP) in the L5 spinal dorsal horn. RESULTS YXB elevated mechanical allodynia thresholds, alleviated heat hypersensitivity and anxiety and depressive behaviors in CFA mice. It significantly reduced the number of CD68+ and proportion of F4/80+CD11b+ within the paws, thereby decreasing macrophage infiltration. Additionally, it diminished the expression of TRPA1 in the paws and TRPV1 in the DRG, leading to an inhibition of peripheral sensitization. Through quantitative analysis, it was found that YXB could modulate DHA-derived oxylipins and LXA4. ELISA results indicated that YXB elevated the levels of LXA4 and inhibited the expression of LAT4H in the paws. Furthermore, the pro-resolution and analgesic effects of YXB were hindered after administration of the FPR2 antagonist. Compared with the AITC group, YXB showed no significant improvement in anti-inflammatory and analgesic effects. CONCLUSIONS YXB can regulate the oxylipins of paws in CFA mice to promote the resolution of inflammation. The LXA4-FPR2-TRPA1 pathway is a key mechanism for the resolution of inflammation and analgesic effects.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xuemin Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Shen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Zhang X, Dong X, Zhang R, Zhou S, Wang W, Yang Y, Wang Y, Yu H, Ma J, Chai X. Compounds identification and mechanism prediction of YuXueBi capsule in the treatment of arthritis by integrating UPLC/IM-QTOF-MS and network pharmacology. Heliyon 2024; 10:e28736. [PMID: 38586342 PMCID: PMC10998111 DOI: 10.1016/j.heliyon.2024.e28736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that seriously affects the life quality of patients. As a patent medicine of Chinese traditional medicine, YuXueBi capsule (YXBC) is widely used for treating RA with significant effects. However, its active compounds and therapeutic mechanisms are not fully illuminated, encumbering the satisfactory clinical application. In this study, we developed a method for identifying the chemical compounds of YXBC and the absorbed compounds into blood of rats using ultra performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) combined with UNIFI analysis software. A total of 58 compounds in YXBC were unambiguously or tentatively identified, 16 compounds from which were found in serum of rats after administration of YXBC. By network pharmacology, these prototype compounds identified in serum were predicted to regulate 30 main pathways (including HIF-1 signaling pathway, neuroactive ligand-receptor interaction, IL-17 signaling pathway, and so on) through 146 targets, resulting in promoting blood circulation and removing blood stasis, analgesia, and anti-inflammatory activities. This study provides a scientific basis for the clinical efficacy of YXBC in the treatment of RA.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xueyuan Dong
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruihu Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shufan Zhou
- Liaoning Good Nurse Pharmaceutical (Group) Co., Ltd., Liaoning, 117201, China
| | - Wei Wang
- Liaoning Good Nurse Pharmaceutical (Group) Co., Ltd., Liaoning, 117201, China
| | - Yu Yang
- Liaoning Good Nurse Pharmaceutical (Group) Co., Ltd., Liaoning, 117201, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Huijuan Yu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jing Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
5
|
He H, Luo H, Qian B, Xu H, Zhang G, Zou X, Zou J. Autonomic Nervous System Dysfunction Is Related to Chronic Prostatitis/Chronic Pelvic Pain Syndrome. World J Mens Health 2024; 42:1-28. [PMID: 37118962 PMCID: PMC10782122 DOI: 10.5534/wjmh.220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/30/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common and non-lethal urological condition with painful symptoms. The complexity of CP/CPPS's pathogenesis and lack of efficient etiological diagnosis results in incomplete treatment and recurrent episodes, causing long-term mental and psychological suffering in patients. Recent findings indicate that the autonomic nervous system involves in CP/CPPS, including sensory, sympathetic, parasympathetic, and central nervous systems. Neuro-inflammation and sensitization of sensory nerves lead to persistent inflammation and pain. Sympathetic and parasympathetic alterations affect the cardiovascular and reproductive systems and the development of prostatitis. Central sensitization lowers pain thresholds and increases pelvic pain perception in chronic prostatitis. Therefore, this review summarized the detailed processes and mechanisms of the critical role of the autonomic nervous system in developing CP/CPPS. Furthermore, it describes the neurologically relevant substances and channels or receptors involved in this process, which provides new perspectives for new therapeutic approaches to CP/CPPS.
Collapse
Affiliation(s)
- Hailan He
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China.
| |
Collapse
|
6
|
Qin R, Ren W, Ya G, Wang B, He J, Ren S, Jiang L, Zhao S. Role of chemokines in the crosstalk between tumor and tumor-associated macrophages. Clin Exp Med 2023; 23:1359-1373. [PMID: 36173487 PMCID: PMC10460746 DOI: 10.1007/s10238-022-00888-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Tumor microenvironment (TME) consists of a dynamic network of non-tumoral stromal cells, including cancer-associated fibroblasts, endothelial cells, tumor-associated macrophages (TAMs), B and T cells. In the TME, TAMs support tumor initiation, progression, invasion and metastasis by promoting angiogenesis and immunosuppression of the tumor cells. There is close crosstalk between TAMs and tumor cells. Notably, chemokines are a significant messenger mediating the crosstalk between tumor cells and TAMs. TAMs can promote tumor progression via secretion of chemokines. Various chemokines secreted by tumors are involved in the generation and polarization of TAMs, the infiltration of TAMs in tumors, and the development of TAMs' suppressive function. This paper reviews CCL2-CCR2, CCL3/5-CCR5, CCL15-CCR1, CCL18-CCR8, CX3CL1/CCL26-CX3CR1, CXCL8-CXCR1/2, CXCL12-CXCR4/CXCR7 signaling pathways, their role in the recruitment, polarization and exertion of TAMs, and their correlation with tumor development, metastasis and prognosis. Furthermore, we present the current research progress on modulating the effects of TAMs with chemokine antagonists and discuss the prospects and potential challenges of using chemokine antagonists as therapeutic tools for cancer treatment. The TAMs targeting by chemokine receptor antagonists in combination with chemotherapy drugs, immune checkpoint inhibitors or radiotherapy appears to be a promising approach.
Collapse
Affiliation(s)
- Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bei Wang
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shaoxin Ren
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Su X, Yuan B, Tao X, Guo W, Mao X, Wu A, Wang Q, Liu C, Zhang Y, Kong X, Han L, Lin N. Anti-angiogenic effect of YuXueBi tablet in experimental rheumatoid arthritis by suppressing LOX/Ras/Raf-1 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115611. [PMID: 35952969 DOI: 10.1016/j.jep.2022.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A Chinese patent medicine derived from a classical traditional Chinese medicine formula, Yu-Xue-Bi tablet (YXB) is widely used in the clinic to treat rheumatoid arthritis (RA). During the progression of RA, angiogenesis plays a central role in fostering the production of inflammatory cells, leading to synovial hyperplasia and bone destruction. However, whether YXB attenuates the angiogenesis during RA progression remains to be defined. AIM OF THE STUDY We aimed to evaluate the anti-angiogenic activity of YXB and explore its mechanism of action in collagen-induced arthritis (CIA) rats and VEGF-induced HUVECs. MATERIALS AND METHODS Transcriptional regulatory network analysis and a network pharmacology approach were employed to explore mechanism of YXB in RA angiogenesis. The antiarthritic effect of YXB was evaluated by determining the arthritis incidence, and score, and by micro-CT analysis. The anti-angiogenic effect of YXB in vivo was assessed by histological and immunohistochemical analyses. The anti-angiogenic effect of YXB in vitro was assessed by wound healing, Transwell migration, Transwell invasion, and tube formation assays. Western-blotting and immunohistochemical analysis were employed to explore the molecular mechanisms of YXB. RESULTS YXB reduced disease severity and ameliorated pathological features in CIA rats. YXB markedly decreased bone destruction and synovial angiogenesis. Consistently, we also demonstrated that YXB effectively suppressed angiogenesis marker CD31 and VEGF expression. In vitro, YXB effectively inhibited HUVEC migration, invasion, and tube formation. Following the identification of transcriptional expression profiles, "YXB putative targets-known RA-related genes-genes associated with the therapeutic effect of YXB" interaction network was constructed and analyzed. After that, the LOX/Ras/Raf-1 signaling axis, which is involved in RA angiogenesis, was identified as one of the candidate mechanisms of YXB against RA. Experimentally, YXB dose-dependently decreased the expression levels of LOX, Ras, and Raf-1, as well as the phosphorylation of MEK and ERK in CIA rats, and these effects were better than the inhibitory effects of methotrexate (MTX), an FDA approved drug used for some autoimmune diseases such as RA. In addition, YXB may function as a potent angiogenesis inhibitor and significantly suppress the VEGF-induced activation of LOX/Ras/Raf-1 signaling in vitro. CONCLUSIONS We provide evidence that YXB may decrease the disease severity of RA and reduce bone erosion by suppressing angiogenesis via inhibition of LOX/Ras/Raf-1 signaling.
Collapse
Affiliation(s)
- Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bei Yuan
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Xueying Tao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wanyi Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qian Wang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lan Han
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|