1
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Liu Y, Liu X, Pan C. Advances in Factors Affecting ALDH2 Activity and its Mechanisms. Cardiovasc Toxicol 2024; 24:1428-1438. [PMID: 39365551 DOI: 10.1007/s12012-024-09923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme primarily involved in the detoxification of alcohol-derived aldehyde and endogenous toxic aldehydes. It exhibits widespread expression across various organs and exerts a broad and significant impact on diverse acute cardiovascular diseases, including acute coronary syndrome, acute aortic dissection, hypoxic pulmonary hypertension, and heart failure. The ALDH2 rs671 variant represents the most prevalent genetic variant in East Asian populations, with carriage rates ranging from 30 to 50% among the Chinese population. Given its widespread presence in the body, the wide range of diseases it affects, and its high rate of variation, it can serve as a crucial tool for the precise prevention and treatment of acute cardiovascular diseases, while offering individualized medication guidance. This review aims to provide a comprehensive overview of the latest advancements in factors affecting ALDH2 activity, encompassing post-transcriptional modifications, modulators of ALDH2, and relevant clinical drugs.
Collapse
Affiliation(s)
- Yun Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xuemei Liu
- Department of Nephrology, The Fifth People's Hospital of Jinan, Jinan, 250022, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Yu Q, Zhang J, Li J, Song Y, Pan J, Mei C, Cui M, He Q, Wang H, Li H, Cheng B, Zhang Y, Guo W, Zhu C, Chen S. Sirtuin 5-Mediated Desuccinylation of ALDH2 Alleviates Mitochondrial Oxidative Stress Following Acetaminophen-Induced Acute Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402710. [PMID: 39159058 PMCID: PMC11497042 DOI: 10.1002/advs.202402710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury. Sirtuins 5 (SIRT5) has been implicated in the development of various liver diseases. However, its involvement in APAP-induced acute liver injury (AILI) remains unclear. The present study aimed to explore the role of SIRT5 in AILI. SIRT5 expression is dramatically downregulated by APAP administration in mouse livers and AML12 hepatocytes. SIRT5 deficiency not only exacerbates liver injury and the inflammatory response, but also worsens mitochondrial oxidative stress. Conversely, the opposite pathological and biochemical changes are observed in mice with SIRT5 overexpression. Mechanistically, quantitative succinylome analysis and site mutation experiments revealed that SIRT5 desuccinylated aldehyde dehydrogenase 2 (ALDH2) at lysine 385 and maintained the enzymatic activity of ALDH2, resulting in the suppression of inflammation and mitochondrial oxidative stress. Furthermore, succinylation of ALDH2 at lysine 385 abolished its protective effect against AILI, and the protective effect of SIRT5 against AILI is dependent on the desuccinylation of ALDH2 at K385. Finally, virtual screening of natural compounds revealed that Puerarin promoted SIRT5 desuccinylase activity and further attenuated AILI. Collectively, the present study showed that the SIRT5-ALDH2 axis plays a critical role in AILI progression and might be a strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Jiye Li
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Yaodong Song
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Chaopeng Mei
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Mengwei Cui
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Qianqian He
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Haifeng Wang
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Huihui Li
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Bo Cheng
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Yan Zhang
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Key Laboratory for Digestive Organ TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Changju Zhu
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| | - Sanyang Chen
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Henan Medical Key Laboratory of Emergency and Trauma ResearchZhengzhouHenan450052China
- Henan Emergency and Trauma Medicine Engineering Research CenterZhengzhouHenan450052China
| |
Collapse
|
4
|
Wang H. HBV infection may sensitize patients to alcoholic steatohepatitis and non-alcoholic steatohepatitis. Gastroenterol Rep (Oxf) 2024; 12:goae018. [PMID: 38560599 PMCID: PMC10980582 DOI: 10.1093/gastro/goae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
5
|
Wang AH, Ma HY, Yi YL, Zhu SJ, Yu ZW, Zhu J, Mei S, Bahetibike S, Lu YQ, Huang LT, Yang RY, Rui-Wang, Xiao SL, Qi R. Oleanolic acid derivative alleviates cardiac fibrosis through inhibiting PTP1B activity and regulating AMPK/TGF-β/Smads pathway. Eur J Pharmacol 2023; 960:176116. [PMID: 38059443 DOI: 10.1016/j.ejphar.2023.176116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-β/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-β/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-β/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- An-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Hao-Yue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Yan-Liang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Su-Jie Zhu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Zhe-Wei Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Zhu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Si Mei
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Shamuha Bahetibike
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - You-Qun Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Li-Ting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ruo-Yao Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Rui-Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Su-Long Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| |
Collapse
|
6
|
Li D, Liu Y, Zhan Q, Zeng Y, Peng Z, He Q, Tan Q, Cao W, Wang S, Wang J. Astragaloside IV Blunts Epithelial-Mesenchymal Transition and G2/M Arrest to Alleviate Renal Fibrosis via Regulating ALDH2-Mediated Autophagy. Cells 2023; 12:1777. [PMID: 37443810 PMCID: PMC10340704 DOI: 10.3390/cells12131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Previous studies show that astragaloside IV (ASIV) has anti-renal fibrosis effects. However, its mechanism remains elusive. In this study, we investigated the anti-fibrosis mechanisms of ASIV on chronic kidney disease (CKD) in vivo and in vitro. A CKD model was induced in rats with adenine (200 mg/kg/d, i.g.), and an in vitro renal fibrosis model was induced in human kidney-2 (HK-2) cells treated with TGF-β1. We revealed that ASIV significantly alleviated renal fibrosis by suppressing the expressions of epithelial-mesenchymal transition (EMT)-related proteins, including fibronectin, vimentin, and alpha-smooth muscle actin (α-SMA), and G2/M arrest-related proteins, including phosphorylated p53 (p-p53), p21, phosphorylated histone H3 (p-H3), and Ki67 in both of the in vivo and in vitro models. Transcriptomic analysis and subsequent validation showed that ASIV rescued ALDH2 expression and inhibited AKT/mTOR-mediated autophagy. Furthermore, in ALDH2-knockdown HK-2 cells, ASIV failed to inhibit AKT/mTOR-mediated autophagy and could not blunt EMT and G2/M arrest. In addition, we further demonstrated that rapamycin, an autophagy inducer, reversed the treatment of ASIV by promoting autophagy in TGF-β1-treated HK-2 cells. A dual-luciferase report assay indicated that ASIV enhanced the transcriptional activity of the ALDH2 promoter. In addition, a further molecular docking analysis showed the potential interaction of ALDH2 and ASIV. Collectively, our data indicate that ALDH2-mediated autophagy may be a novel target in treating renal fibrosis in CKD models, and ASIV may be an effective targeted drug for ALDH2, which illuminate a new insight into the treatment of renal fibrosis and provide new evidence of pharmacology to elucidate the anti-fibrosis mechanism of ASIV in treating renal fibrosis.
Collapse
Affiliation(s)
- Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Quancao Zhan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan Zeng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenfu Cao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Cao C, Zhong H, Chen Z, Song Z, Hu B, Wang X. Triterpene acid from Antrodia camphorata alleviates inflammation in acute liver injury. Aging (Albany NY) 2023; 15:204757. [PMID: 37244283 DOI: 10.18632/aging.204757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
This study aimed to investigate the role and mechanism of Anctin A, the Antrodia camphorata terpene component, in resisting liver injury. Network pharmacology analysis revealed that MAPK3 was the major action target of Antcin A. Furthermore, experimental research suggested that Antcin A suppressed mouse liver injury, reduced the inflammatory factor levels, and enhanced the anti-oxidative capacity. Meanwhile, it suppressed the expression of MAPK3 and the downstream NF-κB signal, while it did not significantly affect the expression of MAPK1. Based on network pharmacology method, this study discovers that the anti-liver injury effect of Antcin A is mainly related to MAPK3, and that Antcin A can suppress the activation of MAPK3 and its downstream NF-κB to inhibit mouse ALI.
Collapse
Affiliation(s)
- Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Hai Zhong
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Zhenwei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Biwen Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
8
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
9
|
Dehydroeburicoic Acid, a Dual Inhibitor against Oxidative Stress in Alcoholic Liver Disease. Pharmaceuticals (Basel) 2022; 16:ph16010014. [PMID: 36678511 PMCID: PMC9866905 DOI: 10.3390/ph16010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complicated disease which can lead to hepatocellular carcinoma; however, there is a lack of satisfactory therapeutics. Dehydroeburicoic acid (DEA) (1), a triterpenoid isolated from Antrodia cinnamomea, has been reported to act against ALD, but its mechanisms of action are still not clear. In this study, we report for the first time the use of DEA (1) as a dual inhibitor of the Keap1-Nrf2 protein-protein interaction (PPI) and GSK3β in an in vitro ALD cell model. DEA (1) engages Keap1 to disrupt the Keap1-Nrf2 PPI and inhibits GSK3β to restore Nrf2 activity in a Keap1-independent fashion. DEA (1) promotes Nrf2 nuclear translocation to activate downstream antioxidant genes. Importantly, DEA (1) restores the mitochondrial dysfunction induced by ethanol and generates antioxidant activity in the ALD cell model with minimal toxicity. We anticipate that DEA (1) could be a potential scaffold for the further development of clinical agents for treating ALD.
Collapse
|
10
|
Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH, Yu WY. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol 2022; 12:997018. [PMID: 36425787 PMCID: PMC9679376 DOI: 10.3389/fcimb.2022.997018] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 07/21/2023] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing recently and has become one of the most common clinical liver diseases. Since the pathogenesis of NAFLD has not been completely elucidated, few effective therapeutic drugs are available. As the "second genome" of human body, gut microbiota plays an important role in the digestion, absorption and metabolism of food and drugs. Gut microbiota can act as an important driver to advance the occurrence and development of NAFLD, and to accelerate its progression to cirrhosis and hepatocellular carcinoma. Growing evidence has demonstrated that gut microbiota and its metabolites directly affect intestinal morphology and immune response, resulting in the abnormal activation of inflammation and intestinal endotoxemia; gut dysbiosis also causes dysfunction of gut-liver axis via alteration of bile acid metabolism pathway. Because of its composition diversity and disease-specific expression characteristics, gut microbiota holds strong promise as novel biomarkers and therapeutic targets for NAFLD. Intervening intestinal microbiota, such as antibiotic/probiotic treatment and fecal transplantation, has been a novel strategy for preventing and treating NAFLD. In this article, we have reviewed the emerging functions and association of gut bacterial components in different stages of NAFLD progression and discussed its potential implications in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen-Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Cancer Hospital, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xue-Jian Li
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jin-Mei Yao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheng-Yu Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Soo-Hyun Yoon
- Institute of Medical Science, Wonkwang University, Iksan, South Korea
| | - Wen-Ying Yu
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|