1
|
Sittichok S, Passara H, Sinthusiri J, Moungthipmalai T, Puwanard C, Murata K, Soonwera M. Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector ( Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde. INSECTS 2024; 15:714. [PMID: 39336682 PMCID: PMC11432066 DOI: 10.3390/insects15090714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Monoterpenes are effective and eco-friendly alternatives to conventional chemical larvicides. We tested single and binary mixtures of monoterpenes-geranial and trans-cinnamaldehyde-for their larvicidal and pupicidal activities against Aedes aegypti L. and for non-target toxicity on guppies (Poecilia reticulata Peters), using 1% (w/w) temephos as a reference. Geranial and trans-cinnamaldehyde at 250 ppm showed stronger larvicidal and pupicidal activities with a 100% mortality rate and an LT50 ranging from 0.3 to 0.6 h. All combinations were strongly synergistic against larvae and pupae compared to single formulations, with an increased mortality value (IMV) of 6% to 93%. The combination of geranial + trans-cinnamaldehyde (1:1) at 200 ppm showed the highest impact, with an IMV of 93%. The strongest larvicidal and pupicidal activities, a 100% mortality rate, and an LT50 of 0.2 h were achieved by geranial + trans-cinnamaldehyde (1:1) 500 ppm. They were thirty times more effective than a 1% temephos solution (LT50 ranging from 6.7 to 96 h) and caused obviously shriveled cuticles and a swollen respiratory system. All single and binary mixtures were not toxic to the guppies. Thus, the combination of geranial + trans-cinnamaldehyde has great potential as a safe insecticide for controlling mosquito larvae and pupae.
Collapse
Affiliation(s)
- Sirawut Sittichok
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Hataichanok Passara
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Jirisuda Sinthusiri
- Community Public Health Program, Faculty of Public and Environmental Health, Huachiew Chalermprakiet University, Bang Phli, Samut Prakan Province 10540, Thailand
| | - Tanapoom Moungthipmalai
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Cheepchanok Puwanard
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Kouhei Murata
- School of Agriculture, Tokai University, Kumamoto 862-8652, Japan
| | - Mayura Soonwera
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
2
|
Hussain S, Javed W, Tajammal A, Khalid M, Rasool N, Riaz M, Shahid M, Ahmad I, Muhammad R, Shah SAA. Synergistic Antibacterial Screening of Cymbopogon citratus and Azadirachta indica: Phytochemical Profiling and Antioxidant and Hemolytic Activities. ACS OMEGA 2023; 8:16600-16611. [PMID: 37214690 PMCID: PMC10193546 DOI: 10.1021/acsomega.2c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/02/2023] [Indexed: 05/24/2023]
Abstract
Current studies were performed to investigate the phytochemistry, synergistic antibacterial, antioxidant, and hemolytic activities of ethanolic and aqueous extracts of Azadirachta indica (EA and WA) and Cymbopogon citratus (EC and WC) leaves. Fourier transform infrared data verified the existence of alcoholic, carboxylic, aldehydic, phenyl, and bromo moieties in plant leaves. The ethanolic extracts (EA and EC) were significantly richer in phenolics and flavonoids as compared to the aqueous extracts (WA and WC). The ethanolic extract of C. citratus (EC) contained higher concentrations of caffeic acid (1.432 mg/g), synapic acid (6.743 mg/g), and benzoic acid (7.431 mg/g) as compared to all other extracts, whereas chlorogenic acid (0.311 mg/g) was present only in the aqueous extract of A. indica (WA). Food preservative properties of C. citratus can be due to the presence of benzoic acid (7.431 mg/g). -Gas chromatography-mass spectrometry analysis demonstrated the presence of 36 and 23 compounds in A. indica and C. citratus leaves, respectively. Inductively coupled plasma analysis was used to determine the concentration of 26 metals (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sn, Sr, V, Zn, Zr, Ti); the metal concentrations were higher in aqueous extracts as compared to the ethanolic extracts. The extracts were generally richer in calcium (3000-7858 ppm), potassium (13662-53,750 ppm), and sodium (3181-8445 ppm) and hence can be used in food supplements as a source of these metals. Antioxidant potential (DDPH method) of C. citratus ethanolic extract was the highest (74.50 ± 0.66%), whereas it was the lowest (32.22 ± 0.28%) for the aqueous extract of A. indica. Synergistic inhibition of bacteria (Staphylococcus aureus and Escherichia coli) was observed when the aqueous extracts of both the plants were mixed together in certain ratios (v/v). The highest antibacterial potential was exhibited by the pure extract of C. citratus, which was even higher than that of the standard drug (ciprofloxacin). The plant extracts and their mixtures were more active against S. aureus as compared to E. coli. No toxic hemolytic effects were observed for the investigated extracts indicating their safe medicinal uses for human beings.
Collapse
Affiliation(s)
- Shabbir Hussain
- Institute
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Warda Javed
- Department
of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore 54792, Pakistan
| | - Affifa Tajammal
- Department
of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore 54792, Pakistan
| | - Muhammad Khalid
- Institute
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Nasir Rasool
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department
of Basic and Applied Chemistry, Faculty
of Science and Technology University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Shahid
- Department
of Chemistry and Biochemistry, University
of Agriculture, Faisalabad 38040, Pakistan
| | - Iqbal Ahmad
- Department
of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan
| | - Riaz Muhammad
- Department
of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore 54792, Pakistan
| | - Syed Adnan Ali Shah
- Faculty
of Pharmacy, Universiti Teknologi MARA Cawangan
Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman
Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| |
Collapse
|
3
|
Garcia AR, Amaral ACF, Maria ACB, Paz MM, Amorim MMB, Chaves FCM, Vermelho AB, Nico D, Rodrigues IA. Antileishmanial Screening, Cytotoxicity, and Chemical Composition of Essential Oils: A Special Focus on Piper callosum Essential Oil. Chem Biodivers 2023; 20:e202200689. [PMID: 36565272 DOI: 10.1002/cbdv.202200689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Leishmania amazonensis is the etiological agent of tegumentary leishmaniasis, a disease characterized by the emergence of cutaneous and mucocutaneous ulcerated lesions that can evolve into severe destruction of skin tissue. Treatment of the disease is often accompanied by high toxicity and variable efficacy. Essential oils stand out for having diverse pharmacological properties. Here, we screened a panel of fourteen essential oils for their anti-L. amazonensis activity, cytotoxicity, and chemical profile. Lippia sidoides (LSEO) and Piper callosum (PCEO) oils displayed the best anti-promastigote and anti-amastigote activities with IC50 of 31 and 21 μg/ml, respectively. PCEO was the safest oil with a desirable selectivity index >10. In addition, PCEO showed no cytotoxicity against the VERO line and erythrocytes. PCEO-treated amastigotes displayed mitochondrial membrane depolarization and high levels of intracellular ROS. Safrole (54.72 %) was the main component of PCEO. The results described here highlight the use of essential oils to combat tegumentary leishmaniasis.
Collapse
Affiliation(s)
- Andreza R Garcia
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Ana Claudia F Amaral
- Laboratório de Produtos Naturais e Derivados, Departamento de Produtos Naturais, Farmanguinhos, FIOCRUZ, Rio de Janeiro, 22775-903, Brazil
| | - Ana Clara B Maria
- Laboratório de Produtos Naturais e Derivados, Departamento de Produtos Naturais, Farmanguinhos, FIOCRUZ, Rio de Janeiro, 22775-903, Brazil
| | - Mariana M Paz
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana M B Amorim
- Instituto Municipal de Vigilância Sanitária, Vigilância de Zoonoses e de Inspeção Agropecuária, Rio de Janeiro, 22290-240, Brazil
| | | | - Alane B Vermelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Igor A Rodrigues
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|