1
|
Wu G, Liao J, Zhu X, Zhang Y, Lin Y, Zeng Y, Zhao J, Zhang J, Yao T, Shen X, Li H, Hu L, Zhang W. Shexiang Baoxin Pill enriches Lactobacillus to regulate purine metabolism in patients with stable coronary artery disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155727. [PMID: 38781732 DOI: 10.1016/j.phymed.2024.155727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND It has been clinically confirmed that the Shexiang Baoxin Pill (SBP) dramatically reduces the frequency of angina in patients with stable coronary artery disease (SCAD). However, potential therapeutic mechanism of SBP has not been fully explored. PURPOSE The study explored the therapeutic mechanism of SBP in the treatment of SCAD patients. METHODS We examined the serum metabolic profiles of patients with SCAD following SBP treatment. A rat model of acute myocardial infarction (AMI) was established, and the potential therapeutic mechanism of SBP was explored using metabolomics, transcriptomics, and 16S rRNA sequencing. RESULTS SBP decreased inosine production and improved purine metabolic disorders in patients with SCAD and in animal models of AMI. Inosine was implicated as a potential biomarker for SBP efficacy. Furthermore, SBP inhibited the expression of genes involved in purine metabolism, which are closely associated with thrombosis, inflammation, and platelet function. The regulation of purine metabolism by SBP was associated with the enrichment of Lactobacillus. Finally, the effects of SBP on inosine production and vascular function could be transmitted through the transplantation of fecal microbiota. CONCLUSION Our study reveals a novel mechanism by which SBP regulates purine metabolism by enriching Lactobacillus to exert cardioprotective effects in patients with SCAD. The data also provide previously undocumented evidence indicating that inosine is a potential biomarker for evaluating the efficacy of SBP in the treatment of SCAD.
Collapse
Affiliation(s)
- Gaosong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Liao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuhao Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Lin
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zeng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jingfang Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tingting Yao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaoxu Shen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liang Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
3
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
4
|
Cao L, Ni H, Gong X, Zang Z, Chang H. Chinese Herbal Medicines for Coronary Heart Disease: Clinical Evidence, Pharmacological Mechanisms, and the Interaction with Gut Microbiota. Drugs 2024; 84:179-202. [PMID: 38265546 DOI: 10.1007/s40265-024-01994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Coronary heart disease (CHD) is a common type of cardiovascular disease (CVD) that has been on the rise in terms of both incidence and mortality worldwide, presenting a significant threat to human health. An increasing body of studies has shown that traditional Chinese medicine (TCM), particularly Chinese herbal medicines (CHMs), can serve as an effective adjunctive therapy to enhance the efficacy of Western drugs in treating CHD due to their multiple targets and multiple pathways. In this article, we critically review data available on the potential therapeutic strategies of CHMs in the intervention of CHD from three perspectives: clinical evidence, pharmacological mechanisms, and the interaction with gut microbiota. We identified 20 CHMs used in clinical practice and it has been found that the total clinical effective rate of CHD patients improved on average by 17.78% with the intervention of these CHMs. Subsequently, six signaling pathways commonly used in treating CHD have been identified through an overview of potential pharmacological mechanisms of these 20 CHMs and the eight representative individual herbs selected from them. CHMs could also act on gut microbiota to intervene in CHD by modulating the composition of gut microbiota, reducing trimethylamine-N-oxide (TMAO) levels, increasing short-chain fatty acids (SCFAs), and maintaining appropriate bile acids (BAs). Thus, the therapeutic potential of CHMs for CHD is worthy of further study in view of the outcomes found in existing studies.
Collapse
Affiliation(s)
- Linhai Cao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hongxia Ni
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Ziyan Zang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China.
| |
Collapse
|
5
|
Li J, Jiang S, Huang C, Lu B, Yang X. Identification and validation of genes associated with aging-related cardiovascular disease. FASEB J 2024; 38:e23370. [PMID: 38168496 DOI: 10.1096/fj.202301270rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Aging is acknowledged as the most significant risk factor for cardiovascular disease (CVD). This study sought to identify and validate potential aging-related genes associated with CVD by using bioinformatics. The confluence of the limma test, weighted correlation network analysis (WGCNA), and 2129 aging and senescence-associated genes led to the identification of aging-related differential expression genes (ARDEGs). By using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), potential biological roles and pathways of ARDEGs were identified. To find the significantly different functions between CVD and non-cardiovascular disease (nCVD) and to reckon the processes score, enrichment analysis of all genes was carried out using gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). By using GO and KEGG, potential biological roles and pathways of ARDEGs were identified. To evaluate the immune cell composition of the immune microenvironment, we performed an immune infiltration analysis on the dataset from the training group. We were able to acquire four ARDEGs (PTGS2, MMP9, HBEGF, and FN1). Aging, cellular senescence, and nitric oxide signal transduction were selected for biological function analysis. The diagnostic value of the four ARDEGs in distinguishing CVD from nCVD samples was deemed to be favorable. This research identified four ARDEGs that are associated with CVD. This study provides insight into prospective novel biomarkers for aging-related CVD diagnosis and progression monitoring.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Shengping Jiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Chengyun Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Baihui Lu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| |
Collapse
|
6
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lin W, Chen X, Wang D, Lu R, Zhang C, Niu Z, Chen J, Ruan X, Wang X. Single-nucleus ribonucleic acid-sequencing and spatial transcriptomics reveal the cardioprotection of Shexiang Baoxin Pill (SBP) in mice with myocardial ischemia-reperfusion injury. Front Pharmacol 2023; 14:1173649. [PMID: 37229263 PMCID: PMC10203427 DOI: 10.3389/fphar.2023.1173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Aim: The Shexiang Baoxin Pill (SBP) has been extensively used to treat cardiovascular diseases in China for four decades, and its clinical efficacy has been widely approved. However, the mechanism by which this is achieved remains largely unexplored. Research attempting to understand the underlying mechanism is ongoing, but the findings are controversial. Here, we aimed to explore the possible mechanism of SBP in myocardial ischemia-reperfusion (I/R) injury using heart single-nucleus and spatial ribonucleic acid (RNA) sequencing. Methods: We established a murine myocardial I/R injury model in C57BL/6 mice by ligating and recanalizing the left coronary artery anterior descending branch. Subsequently, single-nucleus RNA-seq and spatial transcriptomics were performed on mice cardiac tissue. We initially assessed the status of cell types and subsets in the model administered with or without SBP. Results: We used single-nucleus RNA sequencing to comprehensively analyze cell types in the cardiac tissue of sham, I/R, and SBP mice. Nine samples from nine individuals were analyzed, and 75,546 cells were obtained. We classified the cells into 28 clusters based on their expression characteristics and annotated them into seven cell types: cardiomyocytes, endothelial cells, fibroblasts, myeloid cells, smooth muscle cells, B cells, and T cells. The SBP group had distinct cellular compositions and features than the I/R group. Furthermore, SBP-induced cardioprotection against I/R was associated with enhanced cardiac contractility, reduced endocardial cell injury, increased endocardial-mediated angiogenesis, and inhibited fibroblast proliferation. In addition, macrophages had active properties. Conclusion: SBP improves the early LVEF of I/R mice and has a cardioprotective effect. Through sequencing analysis, we observed that SBP can increase the gene expression of Nppb and Npr3 in the infarct area of the heart. Npr3 is related to vascular generation mediated by endocardial cells and requires further research. In addition, SBP increases the number of fibroblasts, inhibits the expression of genes related to fibroblast activation and proliferation, and increases the transformation of endothelial cells into fibroblasts. These findings will help to indicate directions for further research.
Collapse
Affiliation(s)
- Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyuan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixia Lu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunling Zhang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofen Ruan
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Liao J, Zhang Y, Ma C, Wu G, Zhang W. Microbiome-metabolome reveals that the Suxiao Jiuxin pill attenuates acute myocardial infarction associated with fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116529. [PMID: 37086873 DOI: 10.1016/j.jep.2023.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Suxiao Jiuxin pill (SJP) is a Chinese medical patent drug on the national essential drug list of China, with well-established cardiovascular protective effects in the clinic. However, the mechanisms underlying the protective effects of SJP on cardiovascular disease have not yet been elucidated clearly, especially its relationship with the gut microbiota. AIM OF THE STUDY This study aimed to investigate the cardioprotective effect of SJP against isoproterenol-induced acute myocardial infarction (AMI) by integrating the gut microbiome and metabolome. METHODS A rat model of AMI was generated using isoproterenol. Firstly, the effect of antibiotic (ABX) treatment on the blood absorption and excretion of the main components of SJP were studied. Secondly, 16S rRNA sequencing and untargeted metabolomics were used to discover the improvement of SJP treatment on gut microbiota and host metabolism in AMI rats. Finally, targeted metabolomics was used to verify the effects of SJP treatment on host metabolism in AMI rats. RESULT The results showed that ABX treatment could affect the blood absorption and fecal excretion of the main active components of SJP. At the same time, SJP can restore the richness and diversity of gut microbiota, and multiple gut microbiota (including Jeotgalicoccus, Lachnospiraceae, and Blautia) are significantly associated with fatty acids. Untargeted metabolomics also found that SJP could restore the levels of various fatty acid metabolites in serum and cecal contents (p < 0.01, FC > 1.5 and VIP >1). Targeted metabolomics further confirmed that 41, 21, and 39 fatty acids were significantly altered in serum, cecal contents, and heart samples, respectively. Interestingly, these fatty acids belong to the class of eicosanoids, and SJP can significantly downregulate these eicosanoids in AMI rats. CONCLUSION The results of this study suggest that SJP may exert its cardioprotective effects by remodeling the gut microbiota and host fatty acid metabolism.
Collapse
Affiliation(s)
- Jingyu Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuhao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chi Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Li Y, Lu R, Niu Z, Wang D, Wang X. Suxiao Jiuxin Pill alleviates myocardial ischemia-reperfusion injury through the ALKBH5/GSK3β/mTOR pathway. Chin Med 2023; 18:31. [PMID: 36959603 PMCID: PMC10037824 DOI: 10.1186/s13020-023-00736-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Many studies have shown effective protection from myocardial ischemia-reperfusion injury (MIRI) in animal models, but few, if any, treatments have yielded a substantial reduction in clinical. Several studies showed significant therapeutic effects for the Chinese patent medicine Suxiao Jiuxin Pill (SJP) in MIRI, although the specific molecular mechanisms remain undefined. Recently, increasing evidence indicates an important role for m6A modification in autophagy regulation in MIRI, and SJP has not been investigated in this regard. METHODS In vivo experiments were performed in a Wistar rat MIRI model. In vitro assays were conducted in hypoxia/reoxygenation (H/R)-treated H9c2 cells. H9c2 cells with ALKBH5 and GSK3β silencing were constructed by lentivirus transfection. TUNEL and Annexin V/PI assays were carried out for apoptosis detection. Then, m6A modification was detected with the EpiQuik m6A RNA methylation quantification kit, and GFP-RFP-LC3B was used to observe dynamic changes in autophagy. The autophagosome structure was assessed by Transmission electron microscopy. qPCR and immunoblot were performed for mRNA and protein analyses, receptively. RESULTS SJP significantly mitigated MIRI in rats, reducing infarct size and myocardial apoptosis, and improving left ventricular function. In addition, SJP inhibited autophagy through the GSK3β/mTOR pathway in MIRI rats. In cultured H9c2 cells, SJP significantly inhibited H/R- related apoptosis and autophagic activity through the GSK3β/mTOR pathway. Additionally, SJP enhanced ALKBH5 expression in H/R cardiomyocytes, which is important in impaired m6A modification. Interestingly, ALKBH5 knockdown enhanced autophagy and apoptosis in H/R-induced cells, whereas SJP reversed these effects. Further experiments showed that autophagic activity and apoptosis enhanced by ALKBH5 deficiency are GSK3β/mTOR pathway dependent in H/R-treated H9c2 cells. After SJP administration the above effects were alleviated, suggesting SJP inhibited autophagy through the ALKBH5/GSK3β/mTOR pathway in H/R-induced cardiomyocytes. These effects of SJP were common to its two main constituents, including tetra-methylpyrazine (TMP) and borneol (BOR). CONCLUSION SJP improves MIRI in rats and alleviates autophagy and apoptosis in H9c2 cells through the ALKBH5/GSK3β/mTOR pathway, thanks to its two major constituents TMP and BOR.
Collapse
Affiliation(s)
- Yiping Li
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixia Lu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenchao Niu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|