1
|
Li X, Yang W, Dai C, Qiu Z, Luan X, Zhang X, Zhang L. Integrative multi-Omics and network pharmacology reveal angiogenesis promotion by Quan-Du-Zhong Capsule via VEGFA/PI3K-Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119222. [PMID: 39647590 DOI: 10.1016/j.jep.2024.119222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quan-du-zhong capsule (QDZ), derived from the whole plant extract of Eucommiaulmoides Oliv., is a traditional Chinese herbal medicine used in treating vascular-related diseases, including hypertension and osteoporosis. Despite its established uses, its pro-angiogenic effects and underlying mechanisms require further investigation. AIM OF THIS STUDY This study aims to investigate the pro-angiogenic effects of QDZ and explore the underlying mechanisms. MATERIALS AND METHODS The chemical compositions of QDZ, including its absorbed prototypes in rats, were analyzed using UHPLC-Q Exactive-Orbitrap-MS. The pro-angiogenic activities of QDZ were evaluated in human umbilical vein endothelial cells (HUVECs) through various assays, including CCK-8, migration, scratch, tubule formation, and 3D sprouting assays. Additionally, the pro-angiogenic effects of QDZ were further assessed invivo through the matrigel plug assay and a hindlimb ischemia-reperfusion model, with three-dimensional blood flow visualized via micro-CT. A comprehensive approach involving network pharmacology, molecular docking, transcriptomics, and proteomics was utilized to explore the pro-angiogenic mechanism of QDZ, with validation by Western blot analysis. RESULTS QDZ significantly promoted the proliferation, migration, and tubule formation of HUVECs. The matrigel plug assay further confirmed its pro-angiogenic potential. Invivo, QDZ-treated mice displayed enhanced vascular distribution and faster blood flow recovery post-ischemia-reperfusion. Chemical analysis identified 49 compounds in QDZ, with 16 absorbed prototypes detected in rat plasma. Mechanistic investigations through network pharmacology, transcriptomics, and proteomics suggested that QDZ's pro-angiogenic effects were mediated through the VEGFA/PI3K-Akt signaling pathway, with increased phosphorylation of angiogenesis-related proteins such as PI3K, Akt, FAK, and Src. CONCLUSIONS This study demonstrates that QDZ promotes angiogenesis via activating the VEGFA and its downstream PI3K-Akt signaling pathway, shedding light on the mechanisms that underpin its traditional medicinal use in vascular health.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Pharmacy, Fudan University, Shanghai, 200120, China
| | - Wanyue Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunlan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyang Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Zhang
- School of Pharmacy, Fudan University, Shanghai, 200120, China.
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Dong R, Wei J, Tian S, Wang J, Ma Y, Li Y, Liu RX, Liu YQ. Single-cell RNA transcriptomics reveals Du-Zhong-Wan promotes osteoporotic fracture healing via YAP/β-catenin/VEGF axis in BMSCs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155572. [PMID: 39366157 DOI: 10.1016/j.phymed.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Our previous study demonstrated that Du-Zhong-Wan (DZW) promoted osteoporotic fracture (OPF) healing by enhancing osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of endothelial cells (ECs). However, the heterogeneity of BMSCs and ECs, as well as the specific molecular mechanism underlying these effects, still require further evaluation. PURPOSE The primary objective of this study was to elucidate the heterogeneity of BMSCs and ECs, as well as the cellular-level mechanism of DZW against OPF through single-cell RNA sequencing. METHODS In this study, we presented a single-cell atlas of mouse femoral callus, comparing samples with and without DZW treatment, utilizing single-cell RNA sequencing. Variable genes were identified using the FindVariableGenes (FVG) and principal component analysis (PCA) analysis. Additionally, uniform manifold approximation and projection (U-MAP) was employed to reduce and visualize the distinct subclusters. The CellPhoneDB2 method was employed to analyze intercellular communication and quantify the interaction between ligands and receptors within distinct cell clusters. The osteogenic differentiation capacity of BMSCs was assessed by micro-CT, alkaline phosphatase (ALP), and alizarin red S (ARS) assay. The scratch wound assay and tube formation assay were utilized to assess the angiogenic capabilities of ECs in vitro. Additionally, western blot and immunofluorescence experiments were utilized to elucidate the related protein expression. RESULTS Consistent with our previous studies, DZW obviously promoted osteoporotic fracture healing. Moreover, this study discovered 14 cell clusters at the femoral fracture callus, where the BMSCs most actively interacted with ECs, through single-cell sequencing. Notably, DZW significantly elevated the proportion of Lepr+ BMSCs and Podxl+ ECs subgroup, which were respectively considered essential cells for osteoblastogenesis and angiogenesis of arteriolar vessels. The increased proportion of Podxl+ ECs was partially attributed to vascular endothelial growth factor (VEGF), secreted by BMSCs, which were able to be reversed by YAP pharmacological inhibitor verteporfin. Furthermore, the western blot assay revealed elevated expression levels of YAP/β-catenin, VEGF, RUNX2, and OCN in BMSCs treated with DZW, which were counteracted by verteporfin. CONCLUSION The data above indicates that DZW elevates the proportion of LEPR+ BMSCs and Podxl+ ECs, therefore contributing for the osteogenic ability of BMSCs and BMSCs-mediated angiogenesis via activation of the YAP/β-catenin/VEGF axis, which provides novel potential targets and mechanism for DZW in treating OPF in sub-clusters and molecular level.
Collapse
Affiliation(s)
- Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui-Xia Liu
- The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Wei J, Dong R, Ma Y, Wang J, Tian S, Tu X, Mu Z, Liu YQ. Single-cell sequencing reveals that specnuezhenide protects against osteoporosis via activation of METTL3 in LEPR + BMSCs. Eur J Pharmacol 2024; 981:176908. [PMID: 39154827 DOI: 10.1016/j.ejphar.2024.176908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Osteoporosis (OP) has garnered significant attention due to its substantial morbidity and mortality rates, imposing considerable health burdens on societies worldwide. However, the molecular mechanisms underlying osteoporosis pathogenesis remain largely elusive, and the available therapeutic interventions are limited. Therefore, there is an urgent need for innovative strategies in the treatment of osteoporosis. PURPOSE The primary objective of this study was to elucidate the molecular mechanisms underlying osteoporosis pathogenesis using single-cell RNA sequencing (scRNA-seq), thereby proposing novel therapeutic agents. METHODS The mice osteoporosis model was established through bilateral ovariectomy. Micro-computed tomography (μCT) and hematoxylin and eosin (H&E) staining were employed to assess the pathogenesis of osteoporosis. scRNA-seq was utilized to identify and analyze distinct molecular mechanisms and sub-clusters. Gradient dilution analysis was used to obtain specific sub-clusters, which were further validated by immunofluorescence staining and flow cytometry analysis. Molecular docking and cellular thermal shift assay (CETSA) were applied for screening potential agents in the TCMSPs database. Alkaline phosphatase (ALP) activity and alizarin red S (ARS) staining were performed to evaluate the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Osteogenic organoids analysis was employed to assess the proliferation and sphere-forming ability of BMSCs. Quantitative real-time PCR (qRT-PCR) and western blot analysis were conducted to investigate signaling pathways. Wound healing assay and tube formation analysis were employed to evaluate the angiogenesis of endothelial cells. RESULTS The scRNA-seq analysis revealed the crucial role of LEPR+ BMSCs in the pathogenesis of osteoporosis, which was confirmed by immunofluorescence staining of the epiphysis. Subsequently, the LEPR+ BMSCs were obtained by gradient dilution analysis and identified by immunofluorescence staining and flow cytometry. Accordingly, specnuezhenide (Spe) was screened and identified as a potential compound targeting METTL3 from the TCMSPs database. Spe promoted bone formation as evidenced by μ-CT, and H&E analysis. Additionally, Spe enhanced the osteogenic capacity of LEPR+ BMSCs through ALP and ARS assay. Notably, METTL3 pharmacological inhibitors S-Adenosylhomocysteine (SAH) attenuated the aforementioned osteo-protective effects of Spe. Particularly, Spe enhanced the LEPR+ BMSCs-dependent angiogenesis through the secretion of SLIT3, which was abolished by SAH in LEPR+ BMSCs. CONCLUSION Collectively, these findings suggest that Spe could enhance the osteogenic potential of LEPR+ BMSCs and promote LEPR+ BMSCs-dependent angiogenesis by activating METTL3 in LEPR+ BMSCs, indicating its potential as an ideal therapeutic agent for clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyi Tu
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenqiang Mu
- Chongqing Key Laboratory of High Active Traditional Chinese Medicine Delivery System & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Xuan L, Yang S, Ren L, Liu H, Zhang W, Sun Y, Xu B, Gong L, Liu L. Akebia saponin D attenuates allergic airway inflammation through AMPK activation. J Nat Med 2024; 78:393-402. [PMID: 38175326 DOI: 10.1007/s11418-023-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Akebia saponin D (ASD) is a bioactive triterpenoid saponin extracted from Dipsacus asper Wall. ex DC.. This study aimed to investigate the effects of ASD on allergic airway inflammation. Human lung epithelial BEAS-2B cells and bone marrow-derived mast cells (BMMCs) were pretreated with ASD (50, 100 and 200 μΜ) and AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) (1 mM), and then stimulated with lipopolysaccharide (LPS) or IL-33. Pretreatment with ASD and AICAR significantly inhibited TNF-α and IL-6 production from BEAS-2B cells, and IL-13 production from BMMCs. Moreover, pretreatment with ASD and AICAR significantly increased p-AMPK expression in BEAS-2B cells. Inhibition of AMPK by siRNA and compound C partly abrogated the suppression effect of ASD on TNF-α, IL-6, and IL-13 production. Asthma murine model was induced by ovalbumin (OVA) challenge and treated with ASD (150 and 300 mg/kg) or AICAR (100 mg/kg). Infiltration of eosinophils, neutrophils, monocytes, and lymphocytes, and production of TNF-α, IL-6, IL-4, and IL-13 were attenuated in ASD and AICAR treated mice. Lung histopathological changes were also ameliorated after ASD and AICAR treatment. Additionally, it showed that treatment with ASD and AICAR increased p-AMPK expression in the lung tissues. In conclusion, ASD exhibited protective effects on allergic airway inflammation through the induction of AMPK activation.
Collapse
Affiliation(s)
- Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Wen Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| |
Collapse
|
5
|
Liao Y, Chen F, Tang H, Dessie W, Qin Z. Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Iridoids, Chlorogenic Acid, and Flavonoids from Eucommia ulmoides Leaves. Molecules 2024; 29:737. [PMID: 38338480 PMCID: PMC10856201 DOI: 10.3390/molecules29030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.
Collapse
Affiliation(s)
- Yunhui Liao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Feng Chen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
| | - Haishan Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Provincial Key Laboratory for Comprehensive Utilization of Dominant Plant Resources in Southern Hunan, Yongzhou 425199, China
| | - Wubliker Dessie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Zuodong Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
6
|
Liao Y, Chen F, Tang H, Dessie W, Qin Z. Extraction and Purification of Aucubin from Eucommia ulmoides Seed Draff in Natural Deep Eutectic Solvents Using Macroporous Resins. ACS OMEGA 2024; 9:1723-1737. [PMID: 38222590 PMCID: PMC10785622 DOI: 10.1021/acsomega.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Aucubin (AU) is an active ingredient that exerts strong antioxidant and anti-inflammatory effects in the treatment of several diseases. In order to improve the efficiency of resource utilization of traditional biomass waste, Eucommia ulmoides seed-draff (EUSD) waste biomass was used as the raw material, and a series of deep eutectic solvents were selected to evaluate the extraction efficiency of aucubin from EUSD. A response surface experiment was designed based on a single-factor experiment to optimize the extract conditions. The results showed that the best conditions for aucubin extraction were an HBD-HBA ratio of 2.18, a liquid-solid ratio of 46.92 mL/g, a water percentage of 37.95%, a temperature of 321.03 K, and an extraction time of 59.55 min. The maximum amount of aucubin was 156.4 mg/g, which was consistent with the theoretical value (156.8 mg/g). Then, the performance of 12 resins for adsorption and desorption was contrasted. The results revealed that HPD950 resin exhibited the best performance, with an adsorption capacity of 95.2% and a desorption capacity of 94.3%. Additionally, the pseudo-second-order model provided the best match to the kinetics data, the Langmuir model provided the best fit to the isotherm data, and adsorption was a beneficial, spontaneous, exothermic, and physical process. In the recyclability test, the HPD950 resin had great potential and excellent sustainability in aucubin recovery. In the antioxidant activity study, the aucubin extract exerted a strong antioxidant ability with scavenging capabilities for four free radicals. Furthermore, the antifungal activity study found that the aucubin extract exhibited a good antifungal effect against 5 tested pathogens. The research results can provide a theoretical basis for the extraction of high-value components from waste biomass by deep eutectic solvent and a certain application value for the development and utilization of natural aucubin products.
Collapse
Affiliation(s)
- Yunhui Liao
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Engineering Technology Research Center for Comprehensive Development
and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Feng Chen
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
| | - Haishan Tang
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Provincial Key Laboratory for Comprehensive Utilization of Dominant
Plant Resources in Southern Hunan, Yongzhou 425199, China
| | - Wubliker Dessie
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Engineering Technology Research Center for Comprehensive Development
and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Zuodong Qin
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Engineering Technology Research Center for Comprehensive Development
and Utilization of Biomass Resources, Yongzhou 425199, China
| |
Collapse
|
7
|
Skała E, Szopa A. Dipsacus and Scabiosa Species-The Source of Specialized Metabolites with High Biological Relevance: A Review. Molecules 2023; 28:molecules28093754. [PMID: 37175164 PMCID: PMC10180103 DOI: 10.3390/molecules28093754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Luan X, Zhang WD, Ge GB. Interdisciplinary strategies for deciphering the mechanisms of Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116170. [PMID: 36646155 DOI: 10.1016/j.jep.2023.116170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|