1
|
Lin TK, Leu JY, Lai YL, Chang YC, Chung YC, Liu HW. Application of Microwave-Assisted Water Extraction (MAWE) to Fully Realize Various Physiological Activities of Melaleuca quinquenervia Leaf Extract. PLANTS (BASEL, SWITZERLAND) 2024; 13:3362. [PMID: 39683155 DOI: 10.3390/plants13233362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Melaleuca quinquenervia is widely grown in tropical areas worldwide. Studies have demonstrated that extracts of its buds, leaves, and branches obtained through hydrodistillation, steam distillation, or solvent extraction exhibit physiological activities, including anti-melanogenic, antibacterial, and antioxidant properties; nevertheless, such extracts are mostly not effectively collected or adequately utilized. Accordingly, this study applied a rapid, effective, and easy-to-operate microwave-assisted water extraction (MAWE) technique for the first time to prepare M. quinquenervia leaf extract (MLE) with improved physiological activities. The results indicated that the optimal irradiation time and liquid/solid ratio for the production of the MLE were 180 s and 20 mL/g, respectively. Under optimal conditions, the freeze-dried MLE achieved a high yield (6.28% ± 0.08%) and highly effective broad-spectrum physiological activities. The MLE exhibited strong antioxidant, antiaging, and anti-inflammatory activities and excellent antityrosinase and antimicrobial activities. Additionally, the MLE was noncytotoxic at concentrations of ≤300 mg/L, at which it exhibited pharmacological activity. The results also indicated that the MLE comprised a total of 24 chemical compounds and 17 phenolic compounds. Among these compounds, luteolin contributed to antityrosinase activity. The extract's antiaging activity was attributed to ellagic acid and quercetin, its anti-inflammatory activity resulted from ellagic acid and kaempferol, and its antimicrobial activity resulted from quercetin and 3-O-methylellagic acid. In conclusion, the MAWE-derived MLE may be useful as a functional ingredient in cosmetic products, health foods, and botanical drugs.
Collapse
Affiliation(s)
- Ting-Kang Lin
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Jyh-Yih Leu
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yi-Lin Lai
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan
| | - Yu-Chi Chang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan
| | - Hsia-Wei Liu
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
2
|
Mady MS, Elsayed HE, Tawfik NF, Moharram FA. Volatiles extracted from Melaleuca Rugulosa (Link) Craven leaves: comparative profiling, bioactivity screening, and metabolomic analysis. BMC Complement Med Ther 2024; 24:394. [PMID: 39538246 PMCID: PMC11562704 DOI: 10.1186/s12906-024-04683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Melaleuca species (family Myrtaceae) are characterized by their wide-ranging applications as antimicrobials and in skin-related conditions. Herein, we estimated the volatile profile and biological significance of M. rugulosa (Link) leaves for the first time supported by a dereplication protocol. MATERIALS AND METHODS Volatile components were extracted using hydrodistillation (HD), supercritical fluid (SF), and headspace (HS) techniques and identified using GC/MS. The variations among the three extracts were assessed using principal component analysis and orthogonal partial least square discriminant analysis (OPLS-DA). The extracted volatiles were tested for radical scavenging activity, anti-aging, and anti-hyperpigmentation potential. Finally, disc diffusion and broth microdilution assays were implemented to explore the antibacterial capacity against Streptococcus pyogenes, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa. RESULTS The yield of the SF technique (0.8%) was three times higher than HD. GC/MS analysis revealed that the oxygenated compounds are the most proponents in the three extracts being 95.93% (HD), 80.94% (HS), and 48.4% (SF). Moreover, eucalyptol (1,8-cineol) represents the major component in the HD-EO (89.60%) and HS (73.13%) volatiles, while dl-α-tocopherol (16.27%) and α-terpineol (11.89%) represent the highest percentage in SF extract. Regarding the bioactivity profile, the HD-EO and SF-extract showed antioxidant potential in terms of oxygen radical absorbance capacity, and β- carotene assays, while exerting weak activity towards DPPH. In addition, they displayed potent anti-elastase and moderate anti-collagenase activities. The HD-EO exhibited potent anti-tyrosinase activity, while the SF extract showed a moderate level compared to tested controls. OPLS-DA and dereplication studies predicted that the selective antibacterial activity of HD-EO to S. aureus was related to eucalyptol, while SF extract to C. perfringens was related to α-tocopherol. CONCLUSIONS M. rugulosa leaves are considered a vital source of bioactive volatile components that are promoted for controlling skin aging and infection. However, further safety and clinical studies are recommended.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Nashwa F Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
3
|
Silva AR, Ayuso M, García PA, Barros L, Edrada-Ebel R. Unveiling the metabolites underlying the skin anti-ageing properties of Cytinus hypocistis (L.) L. through a biochemometric approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155685. [PMID: 38696922 DOI: 10.1016/j.phymed.2024.155685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND The genus Cytinus, recognised as one of the most enigmatic in the plant kingdom, has garnered attention for its bioactive potential, particularly its skin anti-ageing properties. Despite this recognition, much remains to be accomplished regarding deciphering and isolating its most active compounds. HYPOTHESIS This study aimed to identify the compounds responsible for C. hypocistis skin anti-ageing potential. METHODS Using multivariate analysis, a biochemometric approach was applied to identify the discriminant metabolites by integrating extracts' chemical profile (Liquid Chromatography-High-Resolution Mass Spectrometry, LCHRMS) and bioactive properties. The identified bioactive metabolite was structurally elucidated by 1D and 2D Nuclear Magnetic Resonance (NMR). RESULTS Among the studied bioactivities, the anti-elastase results exhibited a significant variation among the samples from different years. After the biochemometric analysis, the compound 2,3:4,6-bis(hexahydroxydiphenoyl)glucose, with a molecular mass of 784.075 Da, was structurally elucidated as the discriminant feature responsible for the outstanding human neutrophil elastase inhibition. Remarkably, the subfraction containing this compound exhibited a tenfold improvement in neutrophil elastase inhibition efficacy compared to the crude extract; its effectiveness fell within the same range as SPCK, a potent irreversible neutrophil elastase inhibitor. Moreover, this subfraction displayed no cytotoxicity or phototoxicity and excellent efficacy for the tested anti-ageing properties. CONCLUSIONS Hydrolysable tannins were confirmed as the metabolites behind C. hypocistis skin anti-ageing properties, effectively mitigating critical molecular mechanisms that influence the phenotypically distinct ageing clinical manifestations. Pedunculagin was particularly effective in inhibiting neutrophil elastase, considered one of the most destructive enzymes in skin ageing.
Collapse
Affiliation(s)
- Ana Rita Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Departamento de Ciencias Farmacéuticas. Facultad de Farmacia, CIETUS-IBSAL, Universidad de Salamanca, 37007 Salamanca, España; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| | - Manuel Ayuso
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Pablo A García
- Departamento de Ciencias Farmacéuticas. Facultad de Farmacia, CIETUS-IBSAL, Universidad de Salamanca, 37007 Salamanca, España
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
4
|
Liu X, Li X, Ma J. Beverage consumption and facial skin aging: Evidence from Mendelian randomization analysis. J Cosmet Dermatol 2024; 23:1800-1807. [PMID: 38178620 DOI: 10.1111/jocd.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Observational studies have linked coffee, alcohol, tea, and sugar-sweetened beverage (SSB) consumption to facial skin aging. However, confounding factors may influence these studies. The present two-sample Mendelian randomization (MR) investigated the potential causal association between beverage consumption and facial skin aging. METHODS The single-nucleotide polymorphisms (SNPs) associated with coffee, alcohol, and tea intake were derived from the IEU project. The SSB-associated SNPs were selected from a genome-wide association study (GWAS). Data on facial skin aging were derived from the largest GWAS involving 16 677 European individuals. The inverse variance-weighted (IVW) was the main MR analysis method, supplemented by other methods (MR-Egger, weighted median, simple mode, and weighted mode). The MR-Egger intercept analysis was used for sensitivity analysis. Moreover, we conducted a replication analysis using data from another GWAS dataset on coffee consumption to validate our findings. RESULTS Four instrumental variables (IVs) sets were used to examine the causal association between beverage consumption (coffee, alcohol, tea, SSB) and facial skin aging. Our results revealed that genetically predicted higher coffee consumption reduced the risk of facial skin aging (OR: 0.852; 95% CI: 0.753-0.964; p = 0.011, IVW method). The sensitivity analysis confirmed the robustness of the findings, with no evidence of pleiotropy or heterogeneity. The results of replicated MR analysis on coffee consumption were consistent with the initial analysis (OR = 0.997; 95% CI = 0.996-0.999; p = 0.003, IVW method). CONCLUSIONS This study manifests that higher coffee consumption is significantly associated with a reduced risk of facial skin aging. These findings can offer novel strategies for identifying the underlying etiology of facial skin aging.
Collapse
Affiliation(s)
- Xuanchen Liu
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiguang Ma
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
El-Deeb EM, Elsayed HE, Ateya HB, Taha HS, Elgindi MR, Abouelenein D, Caprioli G, Lai KH, Mustafa AM, Moharram FA. Phenolic profiling and bioactivity assessment of in vitro propagated Psidium cattleianum Sabine: A promising study. Heliyon 2024; 10:e29379. [PMID: 38644814 PMCID: PMC11033136 DOI: 10.1016/j.heliyon.2024.e29379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Psidium cattleianum Sabine (strawberry guava) is an evergreen shrub that is grown as a fruiting hedge and has received significant consideration in the food and pharmaceutical disciplines. This study aims to set a promising protocol for in vitro propagation of P. cattleianum, along with profiling the phenolic content of the original plant (OP), induced callus (IC), and regenerated plantlets (RP) extracts, ultimately, evaluating their anti-inflammatory, antioxidant, and anticancer potential. Seeds were treated with commercial bleaching, HCl, and H2O2 to enhance the germination percentage and minimize the contamination percentage. Culturing sterilized leaf explants onto Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA), 2,4-dichloro phenoxy acetic acid, and kinetin showed the best callus induction, while supplementation of MS media with BA, adenine sulfate, naphthalene acetic acid, and gibberellic acid activated regeneration. Augmentation of MS media with indol-3-butyric acid recorded the maximum rooting percentage. Finally, the obtained rooted shoots were successfully acclimatized in sand and peat moss soil. HPLC-MS/MS profiles of OP, RP, and IC showed a variety of phenolic metabolites. IC extract decreased the viability of MCF-7, HepG2, and K-562 cancer cell lines. Also, OP exhibits strong antioxidant activity. P. cattleianum and its RP are profound sources of phenolic compounds promoted for promising applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Eman M. El-Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Heba E. Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hanaa B. Ateya
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hussein S. Taha
- Department of Plant Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed R. Elgindi
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ahmed M. Mustafa
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
6
|
Wang Z, Cui M, Wang H, Ma L, Han Y, Han D, Yan H. Identification of tyrosinase inhibitors in defatted seeds of evening primrose (Oenothera biennis L.) by affinity-labeled molecular networking. Food Res Int 2024; 180:114097. [PMID: 38395549 DOI: 10.1016/j.foodres.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
The defatted seeds of evening primrose (DE), a by-product of evening primrose oil extraction, are currently underutilized. This study aimed to valorize DE by examining its effects on melanogenesis and tyrosinase activity in zebrafish embryos and in vitro, and an innovative affinity-labeled molecular networking workflow was proposed for the rapid identification of tyrosinase inhibitors in DE. Our results indicated DE significantly reduced melanin content (53.3 % at 100 μg/mL) and tyrosinse activity (80.05 % for monophenolase and 70.40 % for diphenolase at 100 μg/mL). Furthermore, through the affinity-labeled molecular networking approach, 20 compounds were identified as potential tyrosinase inhibitors within DE, predominantly flavonoids and tannins characterized by catechin and galloyl substructures. Seven of these compounds were isolated and their inhibitory effects on tyrosinase were validated using functional assays. This study not only underscores the potential of DE as a rich source of natural tyrosinase inhibitors but also establishes the effectiveness of affinity-labeled molecular networking in pinpointing bioactive compounds in complex biological matrices.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Mingfan Cui
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hao Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yehong Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Elsayed HE, Ayoub IM, Mady MS, Moharram FA. Chemical and biological characterization of Melaleuca subulata (Cheel) Craven leaves' volatile constituents supported by chemometric analysis and molecular docking. BMC Complement Med Ther 2024; 24:76. [PMID: 38317130 PMCID: PMC10840179 DOI: 10.1186/s12906-024-04345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The genus Melaleuca (Myrtaceae) comprises dozens of essential oil (EO)-rich species that are appreciated worldwide for their various medicinal values. Additionally, they are renowned in traditional medicine for their antimicrobial, antifungal, and other skin-related activities. The current study investigated the chemical profile and skin-related activities of volatile constituents derived from M. subulata (Cheel) Craven (Synonym Callistemon subulatus) leaves cultivated in Egypt for the first time. METHODS The volatile components were extracted using hydrodistillation (HD), headspace (HS), and supercritical fluid (SF). GC/MS and Kovat's retention indices were implemented to identify the volatile compounds, while the variations among the components were assessed using Principal Component Analysis and Hierarchical Cluster Analysis. The radical scavenging activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and β-carotene assays. Moreover, the anti-aging effect was evaluated using anti-elastase, and anti-collagenase, while the antimicrobial potential was deduced from the agar diffusion and broth microdilution assays. Lastly, the molecular docking study was executed using C-docker protocol in Discovery Studio 4.5 to rationalize the binding affinity with targeted enzymes. RESULTS The SF extraction approach offered the highest EO yield, being 0.75%. According to the GC/MS analysis, monoterpene hydrocarbons were the most abundant volatile class in the HD oil sample (54.95%), with α-pinene being the most copious component (35.17%). On the contrary, the HS and SF volatile constituents were pioneered with oxygenated monoterpenes (72.01 and 36.41%) with eucalyptol and isopulegone being the most recognized components, representing 67.75 and 23.46%, respectively. The chemometric analysis showed segregate clustering of the three extraction methods with α-pinene, eucalyptol, and isopulegone serving as the main discriminating phytomarkers. Concerning the bioactivity context, both SF and HD-EOs exhibited antioxidant effects in terms of ORAC and β-carotene bleaching. The HD-EO displayed potent anti-tyrosinase activity, whereas the SF-EO exhibited significant anti-elastase properties. Moreover, SF-EO shows selective activity against gram-positive skin pathogens, especially S. aureus. Ultimately, molecular docking revealed binding scores for the volatile constituents; analogous to those of the docked reference drugs. CONCLUSIONS M. subulata leaves constitute bioactive volatile components that may be indorsed as bioactive hits for managing skin aging and infection, though further in vivo studies are recommended.
Collapse
Affiliation(s)
- Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
8
|
Wu T, Zhang F, Cai Q, Wu H, Jiang T, Wang L, Chen X, Gao P, Yang X, Chen Y, Yue C, Tang L, Wang Z. Cardioprotective polyphenols from Geum japonicum var. chinense. PHYTOCHEMISTRY 2024; 218:113935. [PMID: 38029953 DOI: 10.1016/j.phytochem.2023.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Seven undescribed tannins, namely gejaponin A-G, and one dehydrodigallic acid derivative 3,4-dihydroxy-5-(3,4,5-trihydroxy-1-ethoxycarbonyl phenoxy)benzoic acid, together with eighteen known polyphenols were isolated from the 95% ethanol extract of the aerial part of Geum japonicum Thunb. var. chinense F. Bolle. Their structures were elucidated on the basis of comprehensive analysis of UV, IR, NMR, HRMS, and CD spectroscopy experiments. To evaluate their bioactivities, sixteen major compounds were selected to intervene in hydrogen peroxide (H2O2)-induced oxidative damage on H9c2 rat cardiomyoblasts. Some compounds demonstrated high activity in this assay, of which, the known compounds 16 and 21 exhibited strong protective effects against H2O2-induced injury in H9c2 rat cardiomyoblasts, with a comparable cardioprotective activity as that of the positive control trimetazidine, thereby revealing cardioprotective activities from G. japonicum var. chinense.
Collapse
Affiliation(s)
- Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingqing Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peiyun Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoyun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|