1
|
Campelo MDS, Câmara Neto JF, Magalhães HCR, Alves Filho EG, Zocolo GJ, Leal LKAM, Ribeiro MENP. GC/MS and 2D NMR-based approach to evaluate the chemical profile of hydroalcoholic extract from Agaricus blazei Murill and its anti-inflammatory effect on human neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117676. [PMID: 38159823 DOI: 10.1016/j.jep.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Agaricus blazei Murill (AbM) is one of the main mushrooms used for medicinal purposes. The use of AbM in the preparation of teas is widespread mainly in Asian countries, while in Brazil it is used as a functional food to combat inflammatory diseases and cancer. AIM OF THE STUDY The main focus of this study was the characterization of the chemical profile of the hydroalcoholic extract of Agaricus blazei Murill (AbE), as well as the evaluation of its cytotoxic and anti-inflammatory potential using human neutrophils. MATERIALS AND METHODS The extract was prepared by dynamic maceration using a mixture of ethanol and water (70/30, v v-1) as solvent. The chemical profile characterization was carried out by 2D NMR and GC-MS techniques. The cytotoxicity of AbE was evaluated through studies of hemolytic potential, cell viability and membrane integrity. The anti-inflammatory activity was analyzed by a PMA-induced neutrophil degranulation assay. RESULTS Chemical analysis of AbE revealed the presence of 28 metabolites in its composition, with mannitol as the major compound. AbE at 1-200 μg mL-1 and mannitol at 4-160 μg mL-1, showed low hemolytic and cytotoxic potential against human red blood cells and neutrophils. Furthermore, both were able to significantly reduce the release of myeloperoxidase. CONCLUSIONS These results indicate that AbE is a promising natural product to be incorporated into pharmaceutical dosage forms intended for the adjuvant treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil; Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal Do Ceará, Campus Porangabuçu, Fortaleza, CEP: 60430-160, Brazil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil
| | | | - Elenilson Godoy Alves Filho
- Departamento de Engenharia de Alimentos, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, CEP: 60511-110, Brazil
| | - Luzia Kalyne Almeida Moreira Leal
- Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal Do Ceará, Campus Porangabuçu, Fortaleza, CEP: 60430-160, Brazil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil.
| |
Collapse
|
2
|
Hou CY, Hsieh CC, Hung YC, Hsu CC, Hsieh CW, Yu SH, Cheng KC. Evaluation of the amelioration effect of Ganoderma formosanum extract on delaying PM2.5 damage to lung macrophages. Mol Nutr Food Res 2024; 68:e2300667. [PMID: 38282089 DOI: 10.1002/mnfr.202300667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Indexed: 01/30/2024]
Abstract
SCOPE Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1β by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.
Collapse
Affiliation(s)
- Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Yin-Ci Hung
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
3
|
Ma Y, Xu H, Chen G, Liu W, Ma C, Meng J, Yuan L, Hua X, Ge G, Lei M. Uncovering the active constituents and mechanisms of Rujin Jiedu powder for ameliorating LPS-induced acute lung injury using network pharmacology and experimental investigations. Front Pharmacol 2023; 14:1186699. [PMID: 37251341 PMCID: PMC10210165 DOI: 10.3389/fphar.2023.1186699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Acute lung injury (ALI) is a common clinical disease with high mortality. Rujin Jiedu powder (RJJD) has been clinically utilized for the treatment of ALI in China, but the active constituents in RJJD and its protective mechanisms against ALI are still unclear. Methodology: ALI mice were established by intraperitoneal injection of LPS to test the effectiveness of RJJD in treating ALI. Histopathologic analysis was used to assess the extent of lung injury. An MPO (myeloperoxidase) activity assay was used to evaluate neutrophil infiltration. Network pharmacology was used to explore the potential targets of RJJD against ALI. Immunohistochemistry and TUNEL staining were performed to detect apoptotic cells in lung tissues. RAW264.7 and BEAS-2B cells were used to explore the protective mechanisms of RJJD and its components on ALI in vitro. The inflammatory factors (TNF-α, IL-6, IL-1β and IL-18) in serum, BALF and cell supernatant were assayed using ELISA. Western blotting was performed to detect apoptosis-related markers in lung tissues and BEAS-2B cells. Results: RJJD ameliorated pathological injury and neutrophil infiltration in the lungs of ALI mice and decreased the levels of inflammatory factors in serum and BALF. Network pharmacology investigations suggested that RJJD treated ALI via regulating apoptotic signaling pathways, with AKT1 and CASP3 as crucial targets and PI3K-AKT signaling as the main pathway. Meanwhile, baicalein, daidzein, quercetin and luteolin were identified as key constituents in RJJD targeting on the above crucial targets. Experimental investigations showed that RJJD significantly upregulated the expression of p-PI3K, p-Akt and Bcl-2, downregulated the expression of Bax, caspase-3 and caspase-9 in ALI mice, and attenuated lung tissue apoptosis. Four active constituents in RJJD (baicalein, daidzein, quercetin and luteolin) inhibited the secretion of TNF-α and IL-6 in LPS-induced RAW264.7 cells. Among these components, daidzein and luteolin activated the PI3K-AKT pathway and downregulated the expression of apoptosis-related markers induced by LPS in BEAS-2B cells. Conclusion: RJJD alleviates the inflammatory storm and prevents apoptosis in the lungs of ALI mice. The mechanism of RJJD in treating ALI is related to the activation of PI3K-AKT signaling pathway. This study provides a scientific basis for the clinical application of RJJD.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Chen
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Ma
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialei Meng
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Hua
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Lei
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|