1
|
Chen L, Chang L, Wu W, Jing M, Li H, Niu C, Wei S, Zhu S, Zhao Y. Multi-omics analysis combined with network pharmacology revealed the mechanisms of rutaecarpine in chronic atrophic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119151. [PMID: 39581285 DOI: 10.1016/j.jep.2024.119151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetradium ruticarpum (A.Juss.) T.G.Hartley is a traditional Chinese medicine with a history of thousands of years, which plays an important role in the relief of gastric pain, indigestion, vomiting and diarrhea. Rutaecarpine (RUT) is one of the major active constituents of Tetradium ruticarpum (A.Juss.) T.G.Hartley with potential therapeutic activity in chronic atrophic gastritis (CAG). However, the mechanism of RUT to improve CAG is not well understood. AIM OF THIS STUDY This study aimed to evaluate the efficacy of RUT in treating CAG and its underlying mechanism. MATERIALS AND METHODS The CAG model of SD rats was established by induction with 0.1% ammonia and 20 mmol/L sodium deoxycholate solution, accompanied with irregular fasting cycle. The efficacy of RUT in treating CAG was assessed through pathological examination and serum biochemical indices including PP, IL-6, MTL, TNF-α, PG I, SS, PG II, IL-10 and GAS-17. Following this, network pharmacology, 16s rRNA sequencing, transcriptomics, and broadly targeted metabolomics were conducted to unravel the underlying mechanisms of RUT's action in CAG treatment. Ultimately, molecular docking, western blotting, and immunohistochemistry were employed to validate the critical targets and pathways involved in RUT's therapeutic approach for CAG. RESULTS RUT significantly improved body weight, gastric juice pH and gastric histologic injury in CAG rats. The results of serum biochemical indices showed that RUT significantly inhibited the expression levels of SS, GAS-17, IL-6 and TNF-α, and increased the levels of MTL, PP, PGI, PGII and IL-10. In addition, RUT apparently increased the expression of mucosal barrier proteins such as ZO-1, E-cadherin and claudin-4 and occludin. Network pharmacology in combination with transcriptomics revealed that the MAPK signaling pathway was the most important pathway for RUT treatment of CAG. Further analysis suggested that by regulating linoleic acid metabolism, metabolic pathways, etc. mainly related to energy metabolism, RUT intervention effectively ameliorated gastric tissue metabolic disorders in CAG rats. The 16S rRNA gene-based microbiota analysis revealed that RUT altered the composition of the intestinal microbiota and decreased the relative abundance of unclassified_Muribaculaceae. PICRUST analysis suggested that the differential bacteria may be involved in energy metabolism pathway regulation for the improvement of CAG. A comprehensive analysis of the transcriptome and metabolome showed that the RUT improved the differential metabolites through the regulation of TGER2, CBR1 and CTPS1 targets. CONCLUSION These findings indicated that RUT's mechanism of action in treating CAG was related to modulating the gut microbiota, influencing energy metabolism, and inhibiting the MAPK signaling pathway. This provided new insights into how RUT exerts its therapeutic effects on CAG.
Collapse
Affiliation(s)
- Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenbin Wu
- Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Cong Niu
- Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shishu Zhu
- Department of Health Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhang M, Wu X, Gao H, Zhang L, Li Y, Li M, Zhao C, Wei P, Ou L. Chinese Herbal Medicine for Irritable Bowel Syndrome: A Perspective of Local Immune Actions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2079-2106. [PMID: 39663262 DOI: 10.1142/s0192415x24500800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the functional gastrointestinal disorder, characterized by abdominal pain and altered bowel habits. The interest in intestinal immune activation as a potential disease mechanism for IBS has increased exponentially in recent years. This study was designed to summarize the Chinese herbal medicine (CHM) that potentially exert protective effects against IBS through inhibition of intestinal immune activation. We detailed the current evidence that immune activation contributes to the pathology of IBS and discussed the potential mechanisms involved. Then, therapeutic effects and possible mechanisms related to immune response of herbal medicine prescriptions, extracts, and monomers were analyzed. The reasons leading to the aberrant and persistent immune activation noted in IBS are mainly associated with the increased number of mast cells, CD3[Formula: see text] T cells, and CD4[Formula: see text] T cells. The mechanisms mainly focused on the gut microbiota disorder induced alteration of the PGE2/COX2/SERT/5-HT, TLR4/MyD88/NF-κB, and BDNF/TrkB pathways. Most of the CHM alleviated IBS through interventions of intestinal immune activation via gut microbiota related to the TLR4/MyD88/NF-κB and SCF/c-kit pathways. We hope this review will provide some clues for the further development of novel candidate agents for IBS and other intestinal immune disorders.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xu Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Engineering Technology Research Center of Shaanxi, Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Huanqing Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Lin Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Yao Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chongbo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Engineering Technology Research Center of Shaanxi, Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| |
Collapse
|
3
|
Wang WJ, Tang HT, Ou SC, Shen WJ, Chen CY, Li YC, Chang SY, Chang WC, Hsueh PR, Huang ST, Hung MC. Novel SARS-CoV-2 inhibition properties of the anti-cancer Kang Guan Recipe herbal formula. Cancer Lett 2024; 604:217198. [PMID: 39197583 DOI: 10.1016/j.canlet.2024.217198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
The ongoing COVID-19 pandemic is a persistent challenge, with continued breakthrough infections despite vaccination efforts. This has spurred interest in alternative preventive measures, including dietary and herbal interventions. Previous research has demonstrated that herbal medicines can not only inhibit cancer progression but also combat viral infections, including COVID-19 by targeting SARS-CoV-2, indicating a multifaceted potential to address both viruses and cancer. Here, we found that the Kang Guan Recipe (KGR), a novel herbal medicine formula, associates with potent inhibition activity against the SARS-CoV-2 viral infection. We demonstrate that KGR exhibits inhibitory activity against several SARS-CoV-2 variants of concern (VOCs). Mechanistically, we found that KGR can block the interaction of the viral spike and human angiotensin-converting enzyme 2 (ACE2). Furthermore, we assessed the inhibitory effect of KGR on SARS-CoV-2 viral entry in vivo, observing that serum samples from healthy human subjects having taken KGR exhibited suppressive activity against SARS-CoV-2 variants. Our investigation provides valuable insights into the potential of KGR as a novel herbal-based preventive and therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
- Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsuan-Ting Tang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Sui-Yuan Chang
- Dept of Clinical Laboratory Sciences and Medical Biotchnology, National Taiwan University College of Medicine, Taipei, Taiwan; Dept of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Dong B, Peng Y, Wang M, Peng C, Li X. Multi-omics integrated analyses indicated that non-polysaccharides of Sijunzi decoction ameliorated spleen deficiency syndrome via regulating microbiota-gut-metabolites axis and exerted synergistic compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118276. [PMID: 38697408 DOI: 10.1016/j.jep.2024.118276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical traditional Chinese medicine formula to invigorating spleen and replenishing qi, Sijunzi decoction (SJZD) is composed of four herbs, which is applied to cure spleen deficiency syndrome (SDS) clinically. The non-polysaccharides (NPSs) of SJZD (SJZD_NPS) are important pharmacodynamic material basis. However, the amelioration mechanism of SJZD_NPS on SDS has not been fully elaborated. Additionally, the contribution of herbs compatibility to efficacy of this formula remains unclear. AIM OF THE STUDY The aim was to explore the underlying mechanisms of SJZD_NPS on improving SDS, and uncover the scientific connotation in SJZD compatibility. MATERIALS AND METHODS A strategy integrating incomplete formulae (called "Chai-fang" in Chinese) comparison, pharmacodynamics, gut microbiome, and metabolome was employed to reveal the role of each herb to SJZD compatibility against SDS. Additionally, the underlying mechanism harbored by SJZD_NPS was further explored through targeted metabolomics, network pharmacology, molecular docking, pseudo-sterile model, and metagenomics. RESULTS SJZD_NPS significantly alleviated diarrhea, disordered secretion of gastrointestinal hormones and neurotransmitters, damage of ileal morphology and intestinal barrier in SDS rats, which was superior to the NPSs of Chai-fang. 16S rRNA gene sequencing and metabolomics analyses revealed that SJZD_NPS effectively restored the disturbed gut microbiota community and abnormal metabolism caused by SDS, showing the most evident recovery. Moreover, SJZD_NPS recalled the levels of partial amino acids, short chain fatty acids and bile acids, which possessed strong binding affinity towards potential targets. The depletion of gut microbiota confirmed that the SDS-amelioration efficacy of SJZD_NPS is dependent on the intact gut microbiome, with the relative abundance of potential probiotics such as Lactobacillus_johnsonii and Lactobacillus_taiwanensis been enriched. CONCLUSION NPSs in SJZD can improve SDS-induced gastrointestinal-nervous system dysfunction through regulating microbiota-gut-metabolites axis, with four herbs exerting synergistic effects, which indicated the compatibility rationality of SJZD.
Collapse
Affiliation(s)
- Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Guo D, Xu K, Wan Q, Yu S, Ma C, Zhang B, Liu Y, Qu L. Different processing methods and pharmacological effects of Atractylodis Rhizoma. Chin J Nat Med 2024; 22:756-768. [PMID: 39197965 DOI: 10.1016/s1875-5364(24)60591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 09/01/2024]
Abstract
Atractylodis Rhizoma, a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases, undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions. However, a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking. This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma, including raw Atractylodis Rhizoma (SCZ), bran-fried Atractylodis Rhizoma (FCZ), deep-fried Atractylodis Rhizoma (JCZ), and rice water-processed Atractylodis Rhizoma (MCZ). It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Dongmei Guo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Kang Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Qianyun Wan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Songyang Yu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chaoyang Ma
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| | - Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
6
|
Huang J, Li J, Peng Y, Cui T, Guo J, Duan S, Zhou K, Huang S, Chen J, Yi Q, Qiu M, Chen T, Wu X, Ma C, Zhang Z, Zheng Y, Tang X, Pang Y, Zhang L, Zhong C, Gao Y. The lack of PPARα exacerbated the progression of non-alcoholic steatohepatitis in mice with spleen deficiency syndrome by triggering an inflammatory response. Front Immunol 2024; 15:1381340. [PMID: 38633246 PMCID: PMC11021588 DOI: 10.3389/fimmu.2024.1381340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background In addition to abnormal liver inflammation, the main symptoms of non-alcoholic steatohepatitis (NASH) are often accompanied by gastrointestinal digestive dysfunction, consistent with the concept of spleen deficiency (SD) in traditional Chinese medicine. As an important metabolic sensor, whether peroxisome proliferator-activated receptor alpha (PPARα) participates in regulating the occurrence and development of NASH with SD (NASH-SD) remains to be explored. Methods Clinical liver samples were collected for RNA-seq analysis. C57BL/6J mice induced by folium sennae (SE) were used as an SD model. qPCR analysis was conducted to evaluate the inflammation and metabolic levels of mice. PPARα knockout mice (PPARαko) were subjected to SE and methionine-choline-deficient (MCD) diet to establish the NASH-SD model. The phenotype of NASH and the inflammatory indicators were measured using histopathologic analysis and qPCR as well. Results The abnormal expression of PPARα signaling, coupled with metabolism and inflammation, was found in the results of RNA-seq analysis from clinical samples. SD mice showed a more severe inflammatory response in the liver evidenced by the increases in macrophage biomarkers, inflammatory factors, and fibrotic indicators in the liver. qPCR results also showed differences in PPARα between SD mice and control mice. In PPARαko mice, further evidence was found that the lack of PPARα exacerbated the inflammatory response phenotype as well as the lipid metabolism disorder in NASH-SD mice. Conclusion The abnormal NR signaling accelerated the vicious cycle between lipotoxicity and inflammatory response in NAFLD with SD. Our results provide new evidence for nuclear receptors as potential therapeutic targets for NAFLD with spleen deficiency.
Collapse
Affiliation(s)
- Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaili Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiabing Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qincheng Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenlu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanqing Pang
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lei Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Zhang Z, Du L, Ji Q, Liu H, Ren Z, Ji G, Bian ZX, Zhao L. The Landscape of Gut Microbiota and Its Metabolites: A Key to Understanding the Pathophysiology of Pattern in Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:89-122. [PMID: 38351704 DOI: 10.1142/s0192415x24500046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Liver Stagnation and Spleen Deficiency (LSSD) is a Chinese Medicine (CM) pattern commonly observed in gastrointestinal (GI) diseases, yet its biological nature remains unknown. This limits the global use of CM medications for treating GI diseases. Recent studies emphasize the role of gut microbiota and their metabolites in the pathogenesis and treatment of LSSD-associated GI diseases. There is increasing evidence supporting that an altered gut microbiome in LSSD patients or animals contributes to GI and extra-intestinal symptoms and affects the effectiveness of CM therapies. The gut microbiota is considered to be an essential component of the biological basis of LSSD. This study aims to provide an overview of existing research findings and gaps for the pathophysiological study of LSSD from the gut microbiota perspective in order to understand the relationship between the CM pattern and disease progression and to optimize CM-based diagnosis, prevention, and therapy.
Collapse
Affiliation(s)
- Zhaozhou Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Liqing Du
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Qiuchen Ji
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hao Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhenxing Ren
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Ling Zhao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
8
|
Zhan X, Xiao Y, Jian Q, Dong Y, Ke C, Zhou Z, Liu Y, Tu J. Integrated analysis of metabolomic and transcriptomic profiling reveals the effect of Atractylodes oil on Spleen Yang Deficiency Syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117205. [PMID: 37741473 DOI: 10.1016/j.jep.2023.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spleen Yang Deficiency Syndrome (SYDS), which is a syndrome commonly treated with Traditional Chinese Medicine (TCM), manifests as overall metabolic dysfunction caused mainly by digestive system disorders. Atractylodes lancea (Thunb.) DC. (AL) is a widely used traditional herb with the efficacy of eliminate dampness and strengthen the spleen, Atractylodes oil (AO) is a medicinal component of AL and can be used to treat various gastrointestinal disorders. However, its effects on SYDS and underlying mechanisms have not been clarified to date. AIM OF THE STUDY The present study aimed to investigate the efficacy of AO in the improvement of the symptoms of SYDS in rat and the underlying mechanism by integrating transcriptomics, and metabolomics. MATERIALS AND METHODS The SYDS rats induced by reserpine were treated with AO. The protective effect of AO on SYDS rats was evaluated by serum biochemical detection, histopathological analyses. Enzyme-linked immunosorbent assay (ELISA), colorimetric assay and immunofluorescence (IF) were performed to determine the levels of relevant indicators of mitochondrial function and energy metabolism in the liver. Liver metabolites and transcript levels were assessed by non-targeted metabolomics and transcriptomics to analyze potential molecular mechanisms and targets. The expression of the corresponding proteins was verified using Western blotting. RESULTS AO not only regulated the digestion, absorption function and oxidative stress status of SYDS rats, but also improved mitochondrial function and alleviated energy metabolism disorders in SYDS rats. Metabolomic and transcriptomic analyses demonstrated that AO regulation is mainly exerted in amino acid metabolism, unsaturated fatty acid metabolism, TCA cycle as well as PPAR and AMPK signaling pathways. In addition, The AMPK signaling pathway was verified and AO promoted AMPK phosphorylation and the expression of SIRT1, PGC-1α, and PPARα in SYDS rats. CONCLUSIONS The therapeutic effect of AO on SYDS is potentially attributable to activation of the AMPK/SIRT1/PGC-1α signaling pathway, which enhances transport and regulation of energy metabolism.
Collapse
Affiliation(s)
- Xin Zhan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qipan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Dong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| |
Collapse
|
9
|
Zhang X, Ma Q, Jia L, He H, Zhang T, Jia W, Zhu L, Qi W, Wang N. Effects of in vitro fermentation of Atractylodes chinensis (DC.) Koidz. polysaccharide on fecal microbiota and metabolites in patients with type 2 diabetes mellitus. Int J Biol Macromol 2023; 253:126860. [PMID: 37716665 DOI: 10.1016/j.ijbiomac.2023.126860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Atractylodes chinensis (DC.) Koidz. polysaccharide (AKP) has been shown to have hypoglycemic activity. In this study, the effects of AKP on fecal microbiota and metabolites in healthy subjects and patients with type 2 diabetes mellitus (T2DM) were investigated using an in vitro simulated digestive fermentation model. AKP were isolated and purified from Atractylodes chinensis (DC.) Koidz. Its main component AKP1 (AKP-0 M, about 78 % of AKP) has an average molecular weight of 3.25 kDa with monosaccharide composition of rhamnose, arabinose, and galactosamine in a molar ratio of 1: 1.25: 2.88. Notably, AKP fermentation might improve the intestinal microbiota of T2DM patients by the enrichment of some specific bacteria rather than the increase of microbial diversity. The addition of AKP specifically enriched Bifidobacteriaceae and weakened the proportion of Escherichia-Shigella. Moreover, AKP also increased the levels of short-chain fatty acids without affecting total gut gas production, suggesting that AKP could have beneficial effects while avoiding flatulence. Metabolomic analysis revealed that ARP fermentation caused changes in some metabolites, which were mainly related to energy metabolism and amino acid metabolism. Importantly, ARP fermentation significantly increased the level of myo-inositol, an insulin sensitizer. In addition, a significant correlation was observed between specific microbiota and differential metabolites. This study has laid a theoretical foundation for AKP application in functional foods.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Qian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Lina Jia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Weiguo Jia
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liying Zhu
- Institute of Food Science Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| |
Collapse
|
10
|
Zhu C, Nie X, Lu Q, Bai Y, Jiang Z. Roles and regulation of Aquaporin-3 in maintaining the gut health: an updated review. Front Physiol 2023; 14:1264570. [PMID: 38089478 PMCID: PMC10714013 DOI: 10.3389/fphys.2023.1264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2025] Open
Abstract
Aquaporin-3 (AQP3) is a predominant water channel protein expressed in the intestine, and plays important roles in the gut physiology and pathophysiology due to its permeability to water, glycerol and hydrogen peroxide. In this review, we systematically summarized the current understanding of the expression of AQP3 in the intestine of different species, and focused on the potential roles of AQP3 in water transport, different types of diarrhea and constipation, intestinal inflammation, intestinal barrier function, oxidative stress, and autophagy. These updated findings have supported that AQP3 may function as an important target in maintaining gut health of human and animals.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Bao ZY, Li HM, Zhang SB, Fei YQ, Yao MF, Li LJ. Administration of A. muciniphila ameliorates pulmonary arterial hypertension by targeting miR-208a-3p/NOVA1 axis. Acta Pharmacol Sin 2023; 44:2201-2215. [PMID: 37433872 PMCID: PMC10618511 DOI: 10.1038/s41401-023-01126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A. muciniphila has been reported to play a critical role in treating cardiovascular disorders. In this study we evaluated the therapeutic effects of A. muciniphila against hypoxia-induced PH and the underlying mechanisms. Mice were pretreated with A. muciniphila suspension (2 × 108 CFU in 200 μL sterile anaerobic PBS, i.g.) every day for 3 weeks, and then exposed to hypoxia (9% O2) for another 4 weeks to induce PH. We showed that A. muciniphila pretreatment significantly facilitated the restoration of the hemodynamics and structure of the cardiopulmonary system, reversed the pathological progression of hypoxia-induced PH. Moreover, A. muciniphila pretreatment significantly modulated the gut microbiota in hypoxia-induced PH mice. miRNA sequencing analysis reveals that miR-208a-3p, a commensal gut bacteria-regulated miRNA, was markedly downregulated in lung tissues exposed to hypoxia, which was restored by A. muciniphila pretreatment. We showed that transfection with miR-208a-3p mimic reversed hypoxia-induced abnormal proliferation of human pulmonary artery smooth muscle cells (hPASMCs) via regulating the cell cycle, whereas knockdown of miR-208a-3p abolished the beneficial effects of A. muciniphila pretreatment in hypoxia-induced PH mice. We demonstrated that miR-208a-3p bound to the 3'-untranslated region of NOVA1 mRNA; the expression of NOVA1 was upregulated in lung tissues exposed to hypoxia, which was reversed by A. muciniphila pretreatment. Furthermore, silencing of NOVA1 reversed hypoxia-induced abnormal proliferation of hPASMCs through cell cycle modulation. Our results demonstrate that A. muciniphila could modulate PH through the miR-208a-3p/NOVA1 axis, providing a new theoretical basis for PH treatment.
Collapse
Affiliation(s)
- Zheng-Yi Bao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Hui-Min Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Shuo-Bo Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi-Qiu Fei
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ming-Fei Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100010, China.
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100010, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
12
|
Wang D, Dong Y, Xie Y, Xiao Y, Ke C, Shi K, Zhou Z, Tu J, Qu L, Liu Y. Atractylodes lancea Rhizome Polysaccharide Alleviates Immunosuppression and Intestinal Mucosal Injury in Mice Treated with Cyclophosphamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37861444 DOI: 10.1021/acs.jafc.3c05173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Plant-derived polysaccharides, such as Atractylodes lancea rhizome polysaccharide (ALP), are good immune regulators. However, the immune regulatory mechanism of the ALP is unknown. This study aimed to evaluate the effects of ALP on the intestinal mucosal barrier and intestinal mucosal immunity of immunosuppressed mice. We also compared the activity of raw Atractylodes lancea rhizome polysaccharide (SALP) with wheat bran processed bran-fried Atractylodes lancea rhizome polysaccharide (FALP; both at 1.2 g/kg/d for mice). Our results showed that ALP effectively increased the immune organ index and blood cell count, stimulated the secretion of cytokines, and promoted the expression of occludin and zonula occludens-1 (ZO-1). ALP also promoted the expression of T cells and the secretion of sIgA. Furthermore, ALP alleviated the gut microbiota disorder in Cy-treated mice and increased the relative abundances of Lactobacillus and Faecalibaculum. ALP reversed the decrease in the level of SCFAs and promoted the expression of G protein-coupled receptor 43 (GPR43). To our knowledge, this study was the first to explore how the ALP protects the intestinal mucosal barrier and enhances intestinal mucosal immunity by alleviating the gut microbiota imbalance and metabolic disorders of SCFAs. FALP was more therapeutic than SALP, suggesting that FALP could be developed as a promising functional food component.
Collapse
Affiliation(s)
- Dongpeng Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Dong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ying Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| |
Collapse
|
13
|
Jiang Z, Lv A, Zhong L, Yang J, Xu X, Li Y, Liu Y, Fan Q, Shao Q, Zhang A. Rapid Prediction of Adulteration Content in Atractylodis rhizoma Based on Data and Image Features Fusions from Near-Infrared Spectroscopy and Hyperspectral Imaging Techniques. Foods 2023; 12:2904. [PMID: 37569173 PMCID: PMC10417609 DOI: 10.3390/foods12152904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Atractylodis rhizoma (AR) is an herb and food source with great economic, medicinal, and ecological value. Atractylodes chinensis (DC.) Koidz. (AC) and Atractylodes lancea (Thunb.) DC. (AL) are its two botanical sources. The commercial fraud of AR adulterated with Atractylodes japonica Koidz. ex Kitam (AJ) frequently occurs in pursuit of higher profit. To quickly determine the content of adulteration in AC and AL powder, two spectroscopic techniques, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI), were introduced. The partial least squares regression (PLSR) algorithm was selected for predictive modeling of AR adulteration levels. Preprocessing and feature variable extraction were used to optimize the prediction model. Then data and image feature fusions were developed to obtain the best predictive model. The results showed that if only single-spectral techniques were considered, NIRS was more suitable for both tasks than HSI techniques. In addition, by comparing the models built after the data fusion of NIRS and HSI with those built by the single spectrum, we found that the mid-level fusion strategy obtained the best models in both tasks. On this basis, combined with the color-texture features, the prediction ability of the model was further optimized. Among them, for the adulteration level prediction task of AC, the best strategy was combining MLF data (at CARS level) and color-texture features (C-TF), at which time the R2T, RMSET, R2P, and RMSEP were 99.85%, 1.25%, 98.61%, and 5.06%, respectively. For AL, the best approach was combining MLF data (at SPA level) and C-TF, with the highest R2T (99.92%) and R2P (99.00%), as well as the lowest RMSET (1.16%) and RMSEP (2.16%). Therefore, combining data and image features from NIRS and HSI is a potential strategy to predict the adulteration content quickly, non-destructively, and accurately.
Collapse
Affiliation(s)
- Zhiwei Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lingjiao Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingjing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaowei Xu
- Wenzhou Forestry Technology Promotion and Wildlife Protection Management Station, Wenzhou 325027, China
| | - Yuchan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Yuchen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Qiuju Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
14
|
Fan Y, Zhao Q, Wei Y, Wang H, Ga Y, Zhang Y, Hao Z. Pingwei San Ameliorates Spleen Deficiency-Induced Diarrhea through Intestinal Barrier Protection and Gut Microbiota Modulation. Antioxidants (Basel) 2023; 12:antiox12051122. [PMID: 37237988 DOI: 10.3390/antiox12051122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Pingwei San (PWS) has been used for more than a thousand years as a traditional Chinese medicine prescription for treating spleen-deficiency diarrhea (SDD). Nevertheless, the exact mechanism by which it exerts its antidiarrheal effects remains unclear. The objective of this investigation was to explore the antidiarrheal efficacy of PWS and its mechanism of action in SDD induced by Rhubarb. To this end, UHPLC-MS/MS was used to identify the chemical composition of PWS, while the body weight, fecal moisture content, and colon pathological alterations were used to evaluate the effects of PWS on the Rhubarb-induced rat model of SDD. Additionally, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were employed to assess the expression of inflammatory factors, aquaporins (AQPs), and tight junction markers in the colon tissues. Furthermore, 16S rRNA was utilized to determine the impact of PWS on the intestinal flora of SDD rats. The findings revealed that PWS increased body weight, reduced fecal water content, and decreased inflammatory cell infiltration in the colon. It also promoted the expression of AQPs and tight junction markers and prevented the loss of colonic cup cells in SDD rats. In addition, PWS significantly increased the abundance of Prevotellaceae, Eubacterium_ruminantium_group, and Tuzzerella, while decreasing the abundance of Ruminococcus and Frisingicoccus in the feces of SDD rats. The LEfSe analysis revealed that Prevotella, Eubacterium_ruminantium_group, and Pantoea were relatively enriched in the PWS group. Overall, the findings of this study indicate that PWS exerted a therapeutic effect on Rhubarb-induced SDD in rats by both protecting the intestinal barrier and modulating the imbalanced intestinal microbiota.
Collapse
Affiliation(s)
- Yimeng Fan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Qingyu Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuanyuan Wei
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Huiru Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yannan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|