1
|
Li J, Wei Y, Huang S, Yan S, Zhao B, Wang X, Sun J, Chen T, Lai Y, Liu R. Hyperglycemia effect of Pinctada martensii hydrolysate in diabetic db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117104. [PMID: 37659759 DOI: 10.1016/j.jep.2023.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinctada martensii (Dunker) and other marine shellfish flesh have been traditionally used in China as folk remedies regulate blood sugar. AIM OF THE STUDY To investigate the main active constituents and the pharmacological mechanism of Pinctada martensii flesh enzymatic hydrolysate (PMH) against T2DM. MATERIALS AND METHODS The hypoglycemic activity of enzymolysis peptides from Pinctada martensii was evaluated by using db/db mice, through the influence of glycemic index, blood lipid and key protein expression of PI3K-Akt pathway. In addition, label-free quantitative proteomics was used to screen the key proteins for Pinctada martensii hydrolysate (PMH) to improve T2DM, and Western blot and qRT-PCR were used to verify the expression difference of differential proteins at protein and mRNA levels between different groups. RESULTS PMH were prepared and characterized. In vivo investigations revealed that the PMH could regulate blood glucose and improve glucose tolerance and insulin tolerance, reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and increase high-density lipoprotein cholesterol levels in db/db mice. Western blot results showed that PMH could up-regulate IRS-1, P-PI3K/PI3K and P-Akt/Akt levels in db/db mice. Label-free quantitative proteomic approach was used to analyze the proteome in db/db mouse liver, 231 proteins were reversed significantly (p < 0.05), and these proteins were involved in oxidative phosphorylation, glycolysis/gluconeogenesis and other pathways. Further screened 15 proteins with FC > 1.2 could be enriched in the retinol metabolic pathway, and the proteins in this pathway were also verified. CONCLUSIONS PMH has hypoglycemic effect and can be used as a potential natural T2DM intervener. The hypoglycemic activity of PMH is related to its regulation of the PI3K/AKT pathway. The PI3K/AKT pathway and the retinol pathway are considered as another potential pathway for PMH to exert hypoglycemic effects.
Collapse
Affiliation(s)
- Jiayun Li
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yuanqing Wei
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Siying Huang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shenghan Yan
- Zhejiang Haifu Marine Biotechnology Co., Ltd, Zhoushan, 202450, PR China
| | - Binyuan Zhao
- Zhejiang Haifu Marine Biotechnology Co., Ltd, Zhoushan, 202450, PR China
| | - Xinzhi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Jipeng Sun
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, PR China
| | - Tianbao Chen
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Rui Liu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Zhang LW, Zhu LL, Zhu XY, Fu SQ, Liu XM. Traditional Chinese Medicine formula Dai-Zong-Fang alleviating hepatic steatosis in db/db mice via gut microbiota modulation. Front Pharmacol 2024; 15:1337057. [PMID: 38327989 PMCID: PMC10847264 DOI: 10.3389/fphar.2024.1337057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction: Hepatic steatosis is a hepatic pathological change closely associated with metabolic disorders, commonly observed in various metabolic diseases such as metabolic syndrome (MetS), with a high global prevalence. Dai-Zong-Fang (DZF), a traditional Chinese herbal formula, is widely used in clinical treatment for MetS, exhibiting multifaceted effects in reducing obesity and regulating blood glucose and lipids. This study aims to explore the mechanism by which DZF modulates the gut microbiota and reduces hepatic steatosis based on the gut-liver axis. Methods: This study utilized db/db mice as a disease model for drug intervention. Body weight and fasting blood glucose were monitored. Serum lipid and transaminase levels were measured. Insulin tolerance test was conducted to assess insulin sensitivity. Hematoxylin and eosin (HE) staining was employed to observe morphological changes in the liver and intestine. The degree of hepatic steatosis was evaluated through Oil Red O staining and hepatic lipid determination. Changes in gut microbiota were assessed using 16S rRNA gene sequencing. Serum lipopolysaccharide (LPS) levels were measured by ELISA. The expression levels of intestinal tight junction proteins, intestinal lipid absorption-related proteins, and key proteins in hepatic lipid metabolism were examined through Western blot and RT-qPCR. Results: After DZF intervention, there was a decrease in body weight, alleviation of glucose and lipid metabolism disorders, reduction in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, and mitigation of insulin resistance in mice. DZF significantly modulated the diversity of the gut microbiota, with a notable increase in the abundance of the Bacteroidetes phylum. PICRUSt indicated that DZF influenced various functions in gut microbiota, including carbohydrate and amino acid metabolism. Following DZF intervention, serum LPS levels decreased, intestinal pathological damage was reduced, and the expression of intestinal tight junction protein occludin was increased, while the expression of intestinal lipid absorption-related proteins cluster of differentiation 36 (CD36) and apolipoprotein B48 (ApoB48) were decreased. In the liver, DZF intervention resulted in a reduction in hepatic steatosis and lipid droplets, accompanied by a decrease fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1) and fatty acid transport protein 2 (FATP2). Conversely, there was an increase in the expression of the fatty acid oxidation-related enzyme carnitine palmitoyltransferase-1𝛂 (CPT-1𝛂). Conclusion: DZF can regulate the structure and function of the intestinal microbiota in db/db mice. This ameliorates intestinal barrier damage and the detrimental effects of endotoxemia on hepatic metabolism. DZF not only inhibits intestinal lipid absorption but also improves hepatic lipid metabolism from various aspects, including de novo lipogenesis, fatty acid uptake, and fatty acid oxidation. This suggests that DZF may act on the liver and intestine as target organs, exerting its effects by improving the intestinal microbiota and related barrier and lipid absorption functions, ultimately ameliorating hepatic steatosis and enhancing overall glucose and lipid metabolism.
Collapse
Affiliation(s)
- Li-Wei Zhang
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Li Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Zhu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shou-Qiang Fu
- Pulmonary Disease Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xi-Ming Liu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Xu J, Zhang LW, Feng H, Tang Y, Fu SQ, Liu XM, Zhu XY. The Chinese herbal medicine Dai-Zong-Fang promotes browning of white adipocytes in vivo and in vitro by activating PKA pathway to ameliorate obesity. Front Pharmacol 2023; 14:1176443. [PMID: 37251344 PMCID: PMC10211343 DOI: 10.3389/fphar.2023.1176443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: The global prevalence of obesity is rising rapidly. Conversion of white adipose tissue (WAT) into beige adipose tissue with heat-consuming characteristics, i.e., WAT browning, effectively inhibits obesity. Dai-Zong-Fang (DZF), a traditional Chinese medicine formula, has long been used to treat metabolic syndrome and obesity. This study aimed to explore the pharmacological mechanism of DZF against obesity. Methods: In vivo, C57BL/6J mice were fed high-fat diets to establish the diet-induced obese (DIO) model. DZF (0.40 g/kg and 0.20 g/kg) and metformin (0.15 g/kg, positive control drug) were used as intervention drugs for six weeks, respectively. The effects of DZF on body size, blood glucose and lipid level, structure and morphology of adipocytes and browning of inguinal WAT (iWAT) in DIO mice were observed. In vitro, mature 3T3-L1 adipocytes were used as the model. Concentrations of DZF (0.8 mg/mL and 0.4 mg/mL) were selected according to the Cell Counting Kit-8 (CCK8). After 2d intervention, lipid droplet morphology was observed by BODIPY493/503 staining, and mitochondria number was observed by mito-tracker Green staining. H-89 dihydrochloride, a PKA inhibitor, was used to observe the change in browning markers' expression. The expression levels of browning markers UCP1 and PGC-1α and key molecules of PKA pathway were detected in vivo and in vitro. Results: In vivo, compared with vehicle control group, 0.40 g/kg DZF significantly reduced obesity in DIO mice from body weight, abdomen circumference, Lee's index, and WAT/body weight (p < 0.01 or p < 0.001). 0.40 g/kg DZF also significantly reduced fasting blood glucose (FBG), serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (p < 0.01 or p < 0.001). The iWAT's morphology and mitochondria were browning after DZF intervention. In HE-staining, the lipid droplets became smaller, and the number of mitochondria increased. The mitochondrial structure was remodeled under the electron microscope. The expression of UCP1, PGC-1α and PKA was elevated in iWAT detected by RT-qPCR (p < 0.05 or p < 0.001). In vitro, compared with the control group, 0.8 mg/mL DZF intervention significantly increased the number of mitochondria and expression of UCP1, PGC-1α, PKA, and pCREB (p < 0.05 or p < 0.01). In contrast, UCP1 and PGC-1α expression were significantly reversed after adding PKA inhibitor H-89 dihydrochloride. Conclusion: DZF can promote UCP1 expression by activating the PKA pathway, thereby promoting browning of WAT, attenuating obesity, and reducing obesity-related glucose and lipid metabolism abnormalities, indicating that DZF has the potential to be selected as an anti-obesity drug to benefit obese patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Wei Zhang
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Feng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Tang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shou-Qiang Fu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xi-Ming Liu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Yun Zhu
- Department of Laboratory of Diabetes, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Melloni E, Grassilli S, Romani A, Rimondi E, Marcuzzi A, Zauli E, Secchiero P, Paganetto G, Guerrini A, Sacchetti G, Tacchini M. Convolvulus pluricaulis Choisy’s Extraction, Chemical Characterization and Evaluation of the Potential Effects on Glycaemic Balance in a 3T3-L1 Adipocyte Cell Model. Nutrients 2023; 15:nu15071727. [PMID: 37049568 PMCID: PMC10097163 DOI: 10.3390/nu15071727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Convolvulus pluricaulis (CP) is a common Indian herb, largely employed in Ayurvedic medicine and known for its neuroprotective and neuroinflammatory action. Its effectiveness against several pathologic/sub-pathologic conditions is widely accepted, but it is not yet completely chemically characterized. In recent years, several researchers have pointed out the involvement of CP and other Convolvulaceae in lipidic and glucidic metabolism, particularly in the control of hyperlipidaemia and diabetic conditions. In this scenario, the aim of the study was to chemically characterize the medium polarity part of the CP whole plant and its fractions and to shed light on their biological activity in adipocyte differentiation using the 3T3-L1 cell model. Our results demonstrated that the CP extract and fractions could upregulate the adipocyte differentiation through the modulation of the nuclear receptor PPARγ (Peroxisome Proliferator-Activated Receptor γ), broadly recognized as a key regulator of adipocyte differentiation, and the glucose transporter GLUT-4, which is fundamental for cellular glucose uptake and for metabolism control. CP also showed the ability to exert an anti-inflammatory effect, downregulating cytokines such as Rantes, MCP-1, KC, eotaxin, and GM-CSF, which are deeply involved in insulin resistance and glucose intolerance. Taken together, these data suggest that CP could exert a potential beneficial effect on glycemia and could be employed as an anti-diabetic adjuvant or, in any case, a means to better control glucose homeostasis.
Collapse
Affiliation(s)
- Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|