1
|
Wu P, Zhang C, Yin Y, Zhang X, Li Q, Yuan L, Sun Y, Zhou S, Ying S, Wu J. Bioactivities and industrial standardization status of Ganoderma lucidum: A comprehensive review. Heliyon 2024; 10:e36987. [PMID: 39435114 PMCID: PMC11492437 DOI: 10.1016/j.heliyon.2024.e36987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
Ganoderma lucidum (GL) is a potent source of bioactive compounds with diverse nutritional and pharmacological benefits. Its popularity as a dietary supplement, herbal remedy, and wellness product is steadily on the rise. Furthermore, the standardized advancement of the GL industry has facilitated reliable sourcing of raw materials and quality control measures, enhancing its utilization and endorsement in the realms of nutritional science and pharmaceutical research. This article provides a comprehensive overview of the recent advancements in research pertaining to the bioactive components of GL, particularly polysaccharides (GLP) and triterpenes (GLTs) as well as highlights the latest findings regarding their beneficial effects on human diseases, including anticancer, antidiabetes, liver protection and other aspects (such as regulating gut microbiota, antioxidant, antimicrobial, antiinflammatory and immune regulation). Furthermore, we summarized the potential applications of GL in the food and pharmaceutical sectors, while also examining the current status of standardization throughout the entire industrial chain of GL, both domestically and internationally. These information offer an insight and guidance for the prospects of industrial development and the innovative advancement of GL within the global health industry.
Collapse
Affiliation(s)
- Peng Wu
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Chengyun Zhang
- Wencheng County Food and Drug Comprehensive Testing Center, Wenzhou, China
| | - Yueyue Yin
- Lishui Institute for Quality Inspection and Testing, Lishui, China
| | | | - Qi Li
- Anhui Guotai Zhongxin Testing Technology Co., Ltd., Hefei, China
| | - Lijingyi Yuan
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Yahe Sun
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Shuhua Zhou
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Shanting Ying
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Jiayan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
2
|
Cheng KC, Chong PCT, Hsieh CC, Lin YT, Ye CH, Khumsupan D, Lu JJ, Yu WC, Cheng KW, Yap KY, Kou WS, Cheng MT, Hsu CC, Sheen LY, Lin SP, Wei AC, Yu SH. Identification of anti-fibrotic and pro-apoptotic bioactive compounds from Ganoderma formosanum and their possible mechanisms in modulating TGF-β1-induced lung fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118008. [PMID: 38458343 DOI: 10.1016/j.jep.2024.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-β1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-β1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-β receptor 1. CONCLUSION Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.
Collapse
Affiliation(s)
- Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Department of Optometry, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, Taiwan. R.O.C; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan. R.O.C
| | - Patrick Chun Theng Chong
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Jheng-Jhe Lu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Weng Si Kou
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Meng-Tsung Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100025, Taiwan. R.O.C
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Leeuwenhoek Laboratories Co. Ltd., No. 71, Fanglan Rd, Taipei, 106038, Taiwan. R.O.C
| | - Lee-Yan Sheen
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, Taiwan. R.O.C
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C.
| |
Collapse
|
3
|
Ahmad MF, Ahmad FA, Zeyaullah M, Alsayegh AA, Mahmood SE, AlShahrani AM, Khan MS, Shama E, Hamouda A, Elbendary EY, Attia KAHA. Ganoderma lucidum: Novel Insight into Hepatoprotective Potential with Mechanisms of Action. Nutrients 2023; 15:1874. [PMID: 37111092 PMCID: PMC10146730 DOI: 10.3390/nu15081874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of β-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department Forensic Science, School of Engineering and Science, G.D Goenka University, Gurugram 122103, Haryana, India;
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Syed Esam Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Alshaimaa Hamouda
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Kandil Abdel Hai Ali Attia
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|