1
|
Li H, Yang W, Shang Z, Lu Y, Shen A, Chen D, Lin G, Li M, Li R, Wu M, Guo Z, Qu H, Fu C, Yu Z, Chen K. Dehydrocorydaline attenuates myocardial ischemia-reperfusion injury via the FoXO signalling pathway: A multimodal study based on network pharmacology, molecular docking, and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118738. [PMID: 39222757 DOI: 10.1016/j.jep.2024.118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dehydrocorydaline (DHC), an active component of Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae), exhibits protective and pain-relieving effects on coronary heart disease, but the underlying mechanism still remains unknown. AIM OF THE STUDY Network pharmacology and experimental validation both in vivo and in vitro were applied to assess whether DHC can treat myocardial ischemia-reperfusion injury (MIRI) by regulating the forkhead box O (FoxO) signalling pathway to inhibit apoptosis. MATERIALS AND METHODS DHC and MIRI targets were retrieved from various databases. Molecular docking and microscale thermophoresis (MST) determined potential binding affinity. An in vivo mouse model of MIRI was established by ligating the left anterior descending coronary artery. C57BL/6N mice were divided into sham, MIRI, and DHC (intraperitoneal injection of 5 mg/kg DHC) groups. Haematoxylin and eosin, Masson, and immunohistochemical stainings verified DHC treatment effects and the involved signalling pathways. In vitro, H9c2 cells were incubated with DHC and underwent hypoxia/reoxygenation. TUNEL, JC-1, and reactive oxygen species stainings and western blots were used to explore the protective effects of DHC and the underlying mechanisms. RESULTS Venny analysis identified 120 common targets from 121 DHC and 23,354 MIRI targets. DHC exhibited high affinity for CCND1, CDK2, and MDM2 (<-7 kcal/mol). In vivo, DHC attenuated decreases in left ventricular ejection fraction and fractional shortening, reduced infarct sizes, and decreased cTnI and lactate dehydrogenase levels. In vitro, DHC alleviated apoptosis and oxidative stress in the hypoxia/reoxygenation model by attenuating ΔΨm disruption; reducing the production of reactive oxygen species; upregulating Bax and CCND1 via the FoxO signalling pathway, as well as cleaved-caspase 8; downregulating the apoptosis-associated proteins Bcl-2, Bid, cleaved-caspase 3, and cleaved-caspase 9; and promoting the phosphorylation of FOXO1A and MDM2. CONCLUSION By upregulating the FoxO signaling pathway to inhibit apoptosis, DHC exerts a cardioprotective effect, which could serve as a potential therapeutic option for MIRI.
Collapse
Affiliation(s)
- Hongzheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China.
| | - Wenwen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Mengfan Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Renfeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Zhi Guo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Zikai Yu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| |
Collapse
|
2
|
Wu Y, Liu M, Li J, Gao R, Hu Q, Xie Y, Zhou H, Li H, He X, Li L. Kouqiangjie formula alleviates diabetic periodontitis by regulating alveolar bone homeostasis via miR-29a-3p-mediated Dkk-1/Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119270. [PMID: 39706357 DOI: 10.1016/j.jep.2024.119270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic periodontitis (DP) is a commonly co-occurring complication in diabetes patients characterized by advanced gum disease and bone resorption. Conventional treatment modalities often fail to adequately address the underlying biological disruptions caused by diabetes. The use of traditional medicinal formulas Kouqiangjie Formula (KQJF) potentially offers novel therapeutic approaches for DP, but its detailed regulatory mechanisms remain unclear. AIM OF THE STUDY This study aims to investigate the impacts of KQJF on osteoblastic activity and inflammatory responses in a rat model and in vitro pre-osteoblast cultures under conditions mimicking DP, focusing on the involvement of the miR-29a-3p-Dkk-1/Wnt/β-catenin signaling pathway. MATERIALS AND METHODS Using network pharmacological analysis, micro-CT, histological staining, and an array of molecular biology methodologies including Western blotting, RT-qPCR, and immunofluorescence, we investigated the systemic and cellular responses to KQJF treatment. Both in vivo (rat model) and in vitro (MC3T3-E1 pre-osteoblasts) models subjected to high glucose and lipopolysaccharide (HG + LPS) stress were used to simulate DP conditions. RESULTS Network pharmacological analyses, incorporating protein-protein interactions and pathway enrichment, disclosed that KQJF interacts with pathways crucial for inflammation and bone metabolism. Experimentally, KQJF significantly preserved alveolar bone architecture, reduced osteoclast activity, and dampened inflammatory cytokine production in DP rats. In pre-osteoblasts, KQJF enhanced cell viability, promoted cell cycle progression, and decreased apoptosis. At the molecular level, KQJF treatment upregulated miR-29a-3p and downregulated Dkk-1, thereby activating the Wnt/β-catenin pathway. The interventional studies with miR-29a-3p antagonists and Dkk-1 knockdown further confirmed the regulatory role of the miR-29a-3p/Dkk-1 axis in mediating the effects of KQJF. CONCLUSION KQJF mitigates the deleterious effects of DP by enhancing osteoblastic activity and reducing inflammatory responses, predominantly through the modulation of the miR-29a-3p-Dkk-1/Wnt/β-catenin signaling pathway. These discoveries underscore the therapeutic promise of KQJF in managing bone and inflammatory complications of DP, offering insights into its mechanism, and supporting its use in clinical settings.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Jiawei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ranran Gao
- Department of Gynaecology, Henan Provincial People's Hospital, Zhengzhou, 450000, China.
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Hongling Zhou
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China.
| | - Huijing Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xiang He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
3
|
Zhang L, Yin H, Xie Y, Zhang Y, Dong F, Wu K, Yang L, Lv H. Exploring the anti‑oxidative mechanisms of Rhodiola rosea in ameliorating myocardial fibrosis through network pharmacology and in vitro experiments. Mol Med Rep 2024; 30:214. [PMID: 39370810 PMCID: PMC11450433 DOI: 10.3892/mmr.2024.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Myocardial fibrosis (MF) significantly compromises cardiovascular health by affecting cardiac function through excessive collagen deposition. This impairs myocardial contraction and relaxation and leads to severe complications and increased mortality. The present study employed network pharmacology and in vitro assays to investigate the bioactive compounds of Rhodiola rosea and their targets. Using databases such as HERB, the Encyclopedia of Traditional Chinese Medicine, Pubchem, OMIM and GeneCards, the present study identified effective components and MF‑related targets. Network analysis was conducted with Cytoscape to develop a Drug‑Ingredient‑Target‑Disease network and the STRING database was utilized to construct a protein‑protein interaction network. Key nodes were analyzed for pathway enrichment using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular interactions were further explored through molecular docking techniques. The bioactivity of salidroside (SAL), the principal component of Rhodiola rosea, against MF was experimentally validated in H9c2 cardiomyocytes treated with angiotensin II and assessed for cell viability, protein expression and oxidative stress markers. Network pharmacology identified 25 active ingredients and 372 targets in Rhodiola rosea, linking SAL with pathways such as MAPK, EGFR, advanced glycosylation end products‑advanced glycosylation end products receptor and Forkhead box O. SAL showed significant interactions with core targets such as albumin, IL6, AKT serine/threonine kinase 1, MMP9 and caspase‑3. In vitro, SAL mitigated AngII‑induced increases in collagen I and alpha smooth muscle actin protein levels and oxidative stress markers, demonstrating dose‑dependent effectiveness in reversing MF. SAL from Rhodiola rosea exhibited potent anti‑oxidative properties that mitigated MF by modulating multiple molecular targets and signaling pathways. The present study underscored the therapeutic potential of SAL in treating oxidative stress‑related cardiovascular diseases.
Collapse
Affiliation(s)
- Luna Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hang Yin
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yumin Xie
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yueyue Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Feihong Dong
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
4
|
Niu T, Wang J, Xun L, Zheng B, Deng Z, Chen Z, Jia K, Zhao P, Zhao Q. Deciphering the impact and mechanism of total flavonoids from Cortex Juglandis Mandshuricae on alcoholic fatty liver employing LC-MS/MS, network pharmacology analysis and in vitro validation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124334. [PMID: 39514994 DOI: 10.1016/j.jchromb.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
The Cortex Juglandis Mandshuricae (CJM) has the efficacy of penetrating the liver meridian, removing heat and dampness, and alleviating the liver, which corresponds to the pathogenesis of alcoholic fatty liver disease (AFLD) with damp heat accumulation. Modern research has shown that total flavonoids from Cortex Juglandis Mandshuricae (TFC) have hepatoprotective, antioxidant and antitumour pharmacological effects. However, there is no any investigation on the mechanism of TFC improving AFLD. In this work, a valid strategy combining UPLC-Q-Exactive Orbitrap-MS, network pharmacology and in vitro cellular experimental validation is proposed to predict the targets and pathways of TFC to ameliorate AFLD and to explore its mechanism of action. As a result, 26 flavonoids and 182 targets linked to TFC and AFLD were identified. These compounds realize their critical targets via various signaling pathways and perform multiple biological functions on the basis of the constructed compound-disease target networks. In vitro experiments demonstrated TFC had a protective impact on ethanol-treated L02 cells to a certain extent and could diminished lipid accretion. In addition, RT-qPCR and western blot results illustrated that TFC could regulate the expression of PPARα, CPT-1, SREBP-1c and FAS, and inhibit alcohol-induced lipid accumulation in L02 cells thereby alleviating AFLD. The present study further provides experimental justification for TFC to ameliorate AFLD in practical applications.
Collapse
Affiliation(s)
- Tianmei Niu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Jiaxin Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Liying Xun
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Bingqing Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Zhipeng Deng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Zhi Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Kaijie Jia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| | - Qitao Zhao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| |
Collapse
|
5
|
Lin S, Li Y, Guo C, Yang L, Ma Y, Dong R, Liu S. Effects of hydrothermal pretreatment on sulfadiazine degradation during two-stage anaerobic digestion of pig manure. CHEMOSPHERE 2024; 366:143475. [PMID: 39368499 DOI: 10.1016/j.chemosphere.2024.143475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Antibiotics in animal manure pose significant risks to the environment and health. While anaerobic digestion (AD) is commonly used for pig manure treatment, its efficiency in antibiotic removal has been considerably limited. This study investigated the impact of hydrothermal pretreatment (HTP) on sulfadiazine (SDZ) removal in a two-stage AD system. Results indicated that the HTP process reduced SDZ concentration by 40.61%. Furthermore, the SDZ removal efficiency of the AD system coupling HTP increased from 50.90% to 65.04% compared to the untreated system. Biogas yield was also improved by 26.17% while maintaining system stability. Changes induced by HTP in the microbial communities revealed that Firmicutes, Bacteroidetes, Caldatribacteriota, and Proteobacteria emerged as the primary bacterial phyla. Following HTP, the relative abundance of Prevotella, which exhibited a strong negative correlation with SDZ concentration, increased significantly by 25-fold in the acidogenic stage. Proteiniphilum, Syntrophomonas and Sedimentibacter showed notable increases in the methanogenic stage after HTP. The N-heterocyclic metabolism carried out by Prevotella might have been the predominant SDZ degradation pathway in the acidogenic stage, while the benzene ring metabolism and hydroxylation by the Proteiniphilum emerged as the primary degradation pathways in the methanogenic stages. Furthermore, biodegradation intermediates were proven to be less toxic than SDZ itself, indicating that the HTP-enhanced two-stage AD process could be a viable way to lower the environmental risks associated with SDZ. The findings from this study provide valuable insights for removing SDZ from the environment via two-stage AD.
Collapse
Affiliation(s)
- Shupeng Lin
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA 22202, USA
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liangcheng Yang
- Department of Health Sciences Environmental Health and Sustainability Program, Illinois State University, USA.
| | - Yanfang Ma
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China.
| |
Collapse
|
6
|
Qi Y, Zhou Q, Zhang Y, Deng J, Li R, Zhang X. Exploring the active components and potential mechanisms of Alpiniae oxyphyllae Fructus in treating diabetes mellitus with depression by UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking. Metab Brain Dis 2024; 39:1065-1084. [PMID: 38954241 DOI: 10.1007/s11011-024-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The growing incidence of diabetes mellitus (DM) and depression is a global public health issue. Alpiniae oxyphyllae Fructus (AOF) is a kind of medicinal and edible plant which be found with anti-diabetic property, and could improve depression-like symptoms. This study aimed to screen active targets and potential mechanisms of AOF in treating DM with depression. Injection of streptozotocin (STZ) and exposure to chronic unpredictable mild stress (CUMS) for 4 weeks were used to conduct the DM with depression mice model. Behavioral tests, indexes of glucose metabolism, monoamine neurotransmitters, inflammatory cytokine and oxidative stress were measured. Histopathological change of hippocampus tissue was observing by HE and Nissl staining. UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking were used to explore the chemical components and mechanisms of AOF on the DM with depression. AOF showed a reversed effect on body weight in DM with depression mice. Glucose metabolism and insulin resistance could be improved by treatment of AOF. In addition, AOF could alleviate depression-like behaviors based on the results of behavior tests and monoamine neurotransmitters. AOF also attenuated STZ-CUMS induced neuron injury in hippocampus. Next, a total of 61 chemical components were identified in the UPLC-Q-Exactive Orbitrap/MS analysis of the extract of AOF. Network pharmacology analysis suggested that 12 active components and 227 targets were screened from AOF, and 1802 target genes were screened from DM with depression, finally 126 intersection target genes were obtained. Drug-disease targets network was constructed and implied that the top five components with a higher degree value includes quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol. Protein-protein interaction (PPI) network showed that MAPK1, FOS, AKT1, IL6 and TP53 may be the core intersection targets. The mechanism of the effect of AOF on DM with depression was analyzed through gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, mainly involved in AGE/RAGE, PI3K/AKT, and MAPK signaling pathways. The results of molecular docking indicated that quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol all had good binding to the core intersection targets. Overall, our experimental researches have demonstrated that AOF could exert the dual effects of anti-diabetic and anti-depression on DM with depression mice, through multi-targets and multi-pathways.
Collapse
Affiliation(s)
- Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
7
|
Zhao Y, Zhu S, Li Y, Niu X, Shang G, Zhou X, Yin J, Bao B, Cao Y, Cheng F, Li Z, Wang R, Yao W. Integrated component identification, network pharmacology, and experimental verification revealed mechanism of Dendrobium officinale Kimura et Migo against lung cancer. J Pharm Biomed Anal 2024; 243:116077. [PMID: 38460276 DOI: 10.1016/j.jpba.2024.116077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo (DO), a valuable Chinese herbal medicine, has been reported to exhibit potential effects in the prevention and treatment of lung cancer. However, its material basis and mechanism of action have not been comprehensively analyzed. PURPOSE The objective of this study was to preliminarily elucidate the active components and pharmacological mechanisms of DO in treating lung cancer, according to UPLC-Q/TOF-MS, HPAEC-PAD, network pharmacology, molecular docking, and experimental verification. METHODS The chemical components of DO were identified via UPLC-Q/TOF-MS, while the monosaccharide composition of Dendrobium officinale polysaccharide (DOP) was determined by HPAEC-PAD. The prospective active constituents of DO as well as their respective targets were predicted in the combined database of Swiss ADME and Swiss Target Prediction. Relevant disease targets for lung cancer were searched in OMIM, TTD, and Genecards databases. Further, the active compounds and potential core targets of DO against lung cancer were found by the C-T-D network and the PPI network, respectively. The core targets were then subjected to enrichment analysis in the Metascape database. The main active compounds were molecularly docked to the core targets and visualized. Finally, the viability of A549 cells and the relative quantity of associated proteins within the major signaling pathway were detected. RESULTS 249 ingredients were identified from DO, including 39 flavonoids, 39 bibenzyls, 50 organic acids, 8 phenanthrenes, 27 phenylpropanoids, 17 alkaloids, 17 amino acids and their derivatives, 7 monosaccharides, and 45 others. Here, 50 main active compounds with high degree values were attained through the C-T-D network, mainly consisting of bibenzyls and monosaccharides. Based on the PPI network analysis, 10 core targets were further predicted, including HSP90AA1, SRC, ESR1, CREBBP, MAPK3, AKT1, PIK3R1, PIK3CA, HIF1A, and HDAC1. The results of the enrichment analysis and molecular docking indicated a close association between the therapeutic mechanism of DO and the PI3K-Akt signaling pathway. It was confirmed that the bibenzyl extract and erianin could inhibit the multiplication of A549 cells in vitro. Furthermore, erianin was found to down-regulate the relative expressions of p-AKT and p-PI3K proteins within the PI3K-Akt signaling pathway. CONCLUSIONS This study predicted that DO could treat lung cancer through various components, multiple targets, and diverse pathways. Bibenzyls from DO might exert anti-lung cancer activity by inhibiting cancer cell proliferation and modulating the PI3K-Akt signaling pathway. A fundamental reference for further studies and clinical therapy was given by the above data.
Collapse
Affiliation(s)
- Yan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Shuaitao Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yuan Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xuan Niu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Guanxiong Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xiaoqi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jiu Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Zhipeng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China.
| | - Ran Wang
- China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 210088, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
8
|
Xu X, Li S, Wang T, Zhen P, Wei Q, Yu F, Tong J. Mitigation of myocardial ischemia/reperfusion-induced chronic heart failure via Shexiang Baoxin Pill-mediated regulation of the S1PR1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155390. [PMID: 38569296 DOI: 10.1016/j.phymed.2024.155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Well-defined and effective pharmacological interventions for clinical management of myocardial ischemia/reperfusion (MI/R) injury are currently unavailable. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine Previous research on SBP has been confined to single-target treatments for MI/R injury, lacking a comprehensive examination of various aspects of MI/R injury and a thorough exploration of its underlying mechanisms. PURPOSE This study aimed to investigate the therapeutic potential of SBP for MI/R injury and its preventive effects on consequent chronic heart failure (CHF). Furthermore, we elucidated the specific mechanisms involved, contributing valuable insights into the potential pharmacological interventions for the clinical treatment of MI/R injury. METHODS We conducted a comprehensive identification of SBP components using high-performance liquid chromatography. Subsequently, we performed a network pharmacology analysis based on the identification results, elucidating the key genes influenced by SBP. Thereafter, through bioinformatics analysis of the key genes and validation through mRNA and protein assays, we ultimately determined the centralized upstream targets. Lastly, we conducted in vitro experiments using myocardial and endothelial cells to elucidate and validate potential underlying mechanisms. RESULTS SBP can effectively mitigate cell apoptosis, oxidative stress, and inflammation, as well as promote vascular regeneration following MI/R, resulting in improved cardiac function and reduced CHF risk. Mechanistically, SBP treatment upregulates sphingosine-1-phosphate receptor 1 (S1PR1) expression and activates the S1PR1 signaling pathway, thereby regulating the expression of key molecules, including phosphorylated Protein Kinase B (AKT), phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, vascular endothelial growth factor A, tumor necrosis factor-α, and p53. CONCLUSION This study elucidated the protective role of SBP in MI/R injury and its potential to reduce the risk of CHF. Furthermore, by integrating downstream effector proteins affected by SBP, this research identified the upstream effector protein S1PR1, enhancing our understanding of the pharmacological characteristics and mechanisms of action of SBP. The significance of this study lies in providing compelling evidence for the use of SBP as a traditional Chinese medicine for MI/R injury and consequent CHF prevention.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Shengnan Li
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Tao Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, PR China
| | - Penghao Zhen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China.
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
9
|
Xu Z, Fan K, Li H, Wang L, Zhu W, Zou S, Zhang Y, Liu Y, Wu Z, Gong Q, Tan M, Wang J, Zhai L. The application of proteomics and phosphoproteomics to reveal the molecular mechanism of salidroside in ameliorating myocardial hypoxia. Heliyon 2024; 10:e30433. [PMID: 38737233 PMCID: PMC11088312 DOI: 10.1016/j.heliyon.2024.e30433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Salidroside (SAL), belonging to a kind of the main active ingredient of Rhodiola rosea, is extensively utilized for anti-hypoxia and prevention of altitude sickness in the plateau region of China. However, the research on the systemic changes induced by SAL at intracellular protein level is still limited, especially at protein phosphorylation level. These limitations hinder a comprehensive understanding of the regulatory mechanisms of SAL. This study aimed to investigate the potential molecular mechanism of SAL in ameliorating the acute myocardial hypoxia induced by cobalt chloride using integrated proteomics and phosphoproteomics. We successfully identified 165 differentially expressed proteins and 266 differentially expressed phosphosites in H9c2 cells following SAL treatment under hypoxic conditions. Bioinformatics analysis and biological experiment validation revealed that SAL significantly antagonized CoCl2-mediated cell cycle arrest by downregulating CCND1 expression and upregulating AURKA, AURKAB, CCND3 and PLK1 expression. Additionally, SAL can stabilize the cytoskeleton through upregulating the Kinesin Family (KIF) members expression. Our study systematically revealed that SAL had the ability to protect myocardial cells against CoCl2-induced hypoxia through multiple biological pathways, including enhancing the spindle stability, maintaining the cell cycle, relieving DNA damage, and antagonizing cell apoptosis. This study supplies a comprehension perspective on the alterations at protein and protein phosphorylation levels induced by SAL treatment, thereby expanded our knowledge of the anti-hypoxic mechanisms of SAL. Moreover, this study provides a valuable resource for further investigating the effects of SAL.
Collapse
Affiliation(s)
- Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Lulu Wang
- State Key Laboratory of Pharmaceutical Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203, China
| | - Wenqing Zhu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Shuang Zou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Yanan Liu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Qian Gong
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Minjia Tan
- State Key Laboratory of Pharmaceutical Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203, China
| | - Jin Wang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Linhui Zhai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- State Key Laboratory of Pharmaceutical Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
10
|
Jia Z, Zou G, Xie Y, Zhang E, Yimingjiang M, Cheng X, Fang C, Wei F. Pharmacokinetic-Pharmacodynamic Correlation Analysis of Rhodiola crenulata in Rats with Myocardial Ischemia. Pharmaceuticals (Basel) 2024; 17:595. [PMID: 38794164 PMCID: PMC11124525 DOI: 10.3390/ph17050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The pharmacokinetics (PK) of Rhodiola crenulata in rats were studied, and pharmacokinetic-pharmacodynamic (PK-PD) correlation analysis was performed to elucidate their time-concentration-effect relationship. The myocardial ischemia model was made with pituitrin. Rats were divided into sham operation, sham operation administration, model, and model administration groups (SG, SDG, MG, and MDG, respectively; n = 6). Blood was collected from the fundus venous plexus at different time points after oral administration. The HPLC-QQQ-MS/MS method was established for the quantification of five components of Rhodiola crenulata. CK, HBDH, SOD, LDH, and AST at different time points were detected via an automatic biochemical analyzer. DAS software was used to analyze PK parameters and PK-PD correlation. The myocardial ischemia model was established successfully. There were significant differences in the PK parameters (AUC0-t, AUC0-∞, Cmax) in MDG when compared with SDG. Two PD indicators, CK and HBDH, conforming to the sigmoid-Emax model, had high correlation with the five components, which indicated a delay in the pharmacological effect relative to the drug concentration in plasma. The difference in the PK parameters between modeled and normal rats was studied, and the time-concentration-effect of composition and effect indicators were investigated. This study can provide reference for the rational clinical application of Rhodiola crenulata and for related studies of other anti-myocardial ischemia drugs.
Collapse
Affiliation(s)
- Zhixin Jia
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| | - Guoming Zou
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Yongyan Xie
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Enning Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Mureziya Yimingjiang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Xianlong Cheng
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| | - Cong Fang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| |
Collapse
|
11
|
Wu Y, Liu M, He X, Zhou H, Wei J, Li H, Yuan Q, Zuo Y, Zhao L, Xie Y. A breakthrough in periodontitis treatment: Revealing the pharmacodynamic substances and mechanisms of Kouqiangjie formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117738. [PMID: 38199336 DOI: 10.1016/j.jep.2024.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Periodontitis, a complex inflammatory disease, significantly affects people's lives. Traditional Chinese multi-herbal formulas, composed of various herbs, exhibit their therapeutic efficacy holistically. Kouqiangjie Formula (KQJF), comprising 12 herbs including Rhizoma smilacis glabrae, Polygonatum sibiricum Delar. ex Redoute, Taraxacum mongolicum Hand.-Mazz, etc., has been clinically proven to effectively treat periodontitis. However, the potential active substances conferring these effects and their mechanisms of action remain unclear. AIM OF THE STUDY The current investigation endeavours to utilize Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS), network pharmacology, and in vivo animal experiment confirmation to explore the plausible bioactive compounds and operational mechanisms underpinning KQJF's therapeutic impact on periodontitis. MATERIALS AND METHODS Using the UPLC-Q-TOF-MS technique, we deciphered the chemical constituents of KQJF. Network pharmacology was employed to earmark key bioactive elements, forecast principal targets, and operational pathways which were later substantiated through molecular docking. Experimental validations were carried out in a periodontitis animal model using a range of techniques, including micro-CT, H&E staining, qRT-PCR, and protein blotting procedures, providing comprehensive verification of our initial assumptions. RESULTS Utilizing UPLC-Q-TOF-MS, we characterized 87 individual chemical constituents in KQJF. Network pharmacology revealed that 14 components, including senkyunolide A, glycycoumarin, licoflavonol, glycyrin, senkyunolide I, and senkyunolide H, form the key therapeutic basis of KQJF in targeting periodontitis. Significant targets and pathways were discerned as AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, IL1β, BCL2, PPARG, and pathways such as the TNF signaling pathway, NF-κB signaling pathway, osteoclast differentiation, and Wnt signaling pathway. Molecular docking demonstrated robust binding activity between these crucial targets and the key active ingredients. In vivo experimentation corroborated that, compared with the model group, KQJF significantly ameliorated symptoms and micro-CT imaging parameters of periodontitis in the rat model, down-regulating the expression of AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, and IL1β, while up-regulating the expression of BCL2 and PPARG. CONCLUSION In summary, this study has pioneered a comprehensive exploration of the potential therapeutic constituents, targets, and mechanisms of KQJF for periodontitis treatment, adopting a synergistic strategy of "chemical component analysis-network pharmacology screening-in vivo animal experiment validation". This provides experimental evidence for the clinical application of KQJF and further in-depth research. Additionally, it presents an effective strategy for the research of other Chinese herbal formulations.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Wei
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Huijing Li
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qianghua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
12
|
Wen Y, Zhang S, Meng X, Zhao C, Hou B, Zhu X, Cai W, Zhou Y, Qiu L, Sun H. Water extracts of Tibetan medicine Wuweiganlu attenuates experimental arthritis via inducing macrophage polarization towards the M2 type. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116934. [PMID: 37480967 DOI: 10.1016/j.jep.2023.116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuweiganlu (WGL) is a well-known formulation described in the "Four Medical Scriptures of Tibetan medicine", which is mainly used for the treatment of Rheumatoid Arthritis (RA) and other chronic ailments prescribed by Tibetan medicine. Nonetheless, the active constituents present in the water extracts of Wuweiganlu (WGLWE) specifically targeting arthritis treatment are largely unknown. AIM OF THE STUDY The aim of this study is to explore the effects and underlying mechanisms of the active components in WGLWE on RA. MATERIALS AND METHODS We utilized ultra-performance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC-Q-TOF-MS) to identify the main chemical compositions of WGLWE. The polarization effect of WGLWE on bone marrow-derived macrophages (BMDM) was determined. A rat model of collagen-induced arthritis (CIA) was established by injecting an emulsion of bovine type II collagen mixed with an equal volume of incomplete Freund's adjuvant into the tail, paw and back of rats. A WGLWE-based ointment was topically applied to the legs and paws of the rats for 30 days. The rats' ankles were photographed to measure the degree of swelling. Micro-CT was used to image the knee joint and paw of rats, and the bone mineral density (BMD) and bone volume fraction (BV/TV) of knee joint in rats were analyzed. High-frequency ultrasound imaging of the rat knee joint was performed to observe knee joint effusion. Further, the serum levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), IL-10, and arginine (Arg-1) in CIA rats were detected by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) and immunofluorescence (IF) co-staining were employed to detect the expression levels of inflammatory factors in synovium. RESULTS A total of 28 main components were identified in WGLWE, and these compounds can directly bind to the inflammatory pathway proteins such as JAK2, NFκB and STAT3. In vitro experiments demonstrated that WGLWE promoted the transformation of M1 macrophages into M2 macrophages and suppressed the release of proinflammatory cytokines TNF-α and IL-6. In vivo studies showed that WGLWE effectively reduced ankle swelling, alleviated knee joint effusion, and improved BV/TV while also reducing synovial inflammation levels. Furthermore, WGLWE compounds induced the transition of M1-type macrophages to M2-type macrophages in synovial tissue, resulting in decreased secretion of inflammatory factors TNF-α, WGLWE improved the synovial inflammatory state. CONCLUSION Our results indicated that WGLWE alleviated joint inflammation in CIA rats and the underlying mechanism may be related to inducing the transformation of bone marrow-derived M1 macrophages to M2 macrophages, leading to an increase in the secretion of anti-inflammatory factors and a decrease in pro-inflammatory factors. Therefore, WGLWE may be used as a potential herbal preparation for the treatment of RA.
Collapse
Affiliation(s)
- Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Xinyu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Chenyang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Yuetao Zhou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
13
|
Teng H, Wu D, Lu L, Gao C, Wang H, Zhao Y, Wang L. Design and synthesis of 3,4-seco-lupane triterpene derivatives to resist myocardial ischemia-reperfusion injury by inhibiting oxidative stress-mediated mitochondrial dysfunction via the PI3K/AKT/HIF-1α axis. Biomed Pharmacother 2023; 167:115452. [PMID: 37688986 DOI: 10.1016/j.biopha.2023.115452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
In this study, 86 new seco-lupane triterpenoid derivatives were designed, synthesized, and characterized, and their protective activities against ischemia-reperfusion injury were investigated in vitro and in vivo. Structure-activity relationship studies revealed that most target compounds could protect cardiomyocytes against hypoxia/reoxygenation-induced injury in vitro, with compound 85 being the most active and exhibiting more potent protective activity than clinical first-line drugs. Furthermore, all thiophene derivatives exhibited stronger protective activity than furan, pyridine, and pyrazine derivatives, and the protective activity gradually increased with the extension of the alkyl chain and changed in the substituent. The data from the in-vitro and in-vivo experiments revealed that compound 85 protected mitochondria from damage by inhibiting excessive production of oxidative stressors, such as intracellular ROS, which in turn inhibited the apoptosis and necrotize of cardiomyocytes and reduced infarct size, thereby protecting normal cardiac function. It was associated with enhanced activation of the PI3K/AKT-mediated HIF-1α signaling pathway. Therefore, compound 85 acts as an oxidative stress inhibitor, blocks ROS production, protects mitochondria and cells from myocardial ischemia/reperfusion (MI/R) injury, and represents an effective new drug for treating MI/R injury.
Collapse
Affiliation(s)
- Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Di Wu
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Luo Lu
- Drug Evaluation Center of Jilin Province, Changchun, Jilin, China
| | - Chunyu Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Haohao Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Liyan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
14
|
Ma J, Li Y, Ji X, Wang A, Lan Y, Ma L. Integrating network pharmacology and experimental verification to explore the mechanisms of salidroside against myocardial fibrosis. Biochem Biophys Res Commun 2023; 677:38-44. [PMID: 37544102 DOI: 10.1016/j.bbrc.2023.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Myocardial fibrosis (MF) is the manifestation of a variety of cardiovascular diseases. Salidroside (SAL) has been proved to have a certain effect on anti-fibrosis in various organs. However, the mechanism of SAL in the treatment of MF remains unclear. Network pharmacology showed that there were 1228 SAL-related target genes and 2793 MF-related target genes. The intersection of these genes resulted in 271 drug-disease interactions, and 15 core active targets were filtered from protein-protein interaction mapping. The top 20 Gene ontology biological processes analysis showed that the involved processes were close to the pathogenesis of MF. Among the top 20 enriched KEGG pathways, Wnt/β-catenin and TGF-β1/Smad3 signaling pathways were identified. In vivo, MI rats exhibited thinning of the myocardial region and the formation of fibrous scars, the expression of smad3 and β-catenin were increased. After SAL treatment, there was a significant reduction in collagen area and a decrease in the ratio of collagen type I to type III. The expression of smad3 and β-catenin was suppressed and positively correlated with the dosage of SAL. SAL may contribute to the progression of MF through the TGF-β1/Smad3 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jie Ma
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yujie Li
- Changping District Hospital of Traditional Chinese Medicine, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Ji
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Anqi Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Lan
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Ma
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|