1
|
Sun YJ, Zhang QY, Liu F, Chen L, Wang JF. Polysaccharides isolated from Cibotium barometz attenuate chronic inflammatory pain: Molecular chemical structure and role of phenylalanine. Int J Biol Macromol 2025; 297:139911. [PMID: 39818377 DOI: 10.1016/j.ijbiomac.2025.139911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways. These pathways include glycerophospholipid metabolism, which plays an essential role in maintaining cellular membrane integrity and signaling; the biosynthesis of phenylalanine, tyrosine, and tryptophan, which are vital amino acids involved in numerous physiological processes; phenylalanine metabolism, which is significant for neurotransmitter synthesis; as well as the metabolism of alanine, aspartate, and glutamate, which are crucial for various metabolic functions, including neurotransmission and energy production. The metabolic alterations observed in both serum and spinal cord samples provide invaluable insights into the biochemical changes associated with inflammatory processes, thereby highlighting the potential therapeutic impact of PCB. The findings from this study not only deepen our understanding of the metabolic disturbances that occur during acute inflammation but also offer a solid theoretical foundation for clarifying the specific mechanisms through which PCB exerts its anti-inflammatory effects.
Collapse
Affiliation(s)
- Ying-Jiao Sun
- Department of Pain Management, Qilu Hospital of Shandong University, 107# West Wenhua Road, Jinan, Shandong 250012, China; Shandong Academy of Pharmaceutical Sciences, Postdoctoral Scientific Research Workstation, Engineering Research Center for Sugar and Sugar Complex, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Qiong-Yu Zhang
- Department of Anesthesiology, the First Hospital Affiliated Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan 250011, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Postdoctoral Scientific Research Workstation, Engineering Research Center for Sugar and Sugar Complex, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Lei Chen
- Shandong Academy of Pharmaceutical Sciences, Postdoctoral Scientific Research Workstation, Engineering Research Center for Sugar and Sugar Complex, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Jian-Feng Wang
- Department of Pain Management, Qilu Hospital of Shandong University, 107# West Wenhua Road, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Zhong YY, Wang H, Wang YY. Effects of Ethnic Medicinal Plant Extracts Versus Nonsteroidal Anti-Inflammatory Drugs on Menstrual Pain in Women With Primary Dysmenorrhea: A Systematic Review and Meta-Analysis Study. Pain Manag Nurs 2025:S1524-9042(25)00019-0. [PMID: 40016049 DOI: 10.1016/j.pmn.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND This study aimed to compare the pain reduction effects of ethnic medicinal plant extracts and nonsteroidal anti-inflammatory drugs (NSAIDs) in women with primary dysmenorrhea. METHODS The following databases were searched: CNKI, Wanfang Data Knowledge Service Platform (Wanfang), VIP Chinese Journal Service Platform (VIP), SinoMed, PubMed, and Web of Science. The retrieval period was from the time of database construction to December 2023.Randomized controlled trials (RCTs) that compared the treatment of pain in women with primary dysmenorrhea using NSAIDs in the control group and plant extracts in the intervention group were identified. The literature was independently screened by two researchers, and the quality of the literature were evaluated using Cochrane's RCT Risk Assessment Manual for Bias. The evaluation includes several aspects including random sequence generation, assignment hiding, blind method and result data reporting. Meta-analysis was conducted using RevMan 5.4 software. RESULTS A total of 12 literature were included. Meta-analysis showed that there was no significant difference between ethnic medicinal plant extracts and NSAIDs in reducing the Visual Analog Scale (VAS) pain scores for primary dysmenorrhea (SMD = 0.32, 95% CI (-0.14, 0.78), p = .17). However, ethnic medicinal plant extracts were more effective than NSAIDs in reducing the proportion of people with pain, with a slight difference (OR = 1.75, 95% CI (1.02, 3.02), p < .05). CONCLUSION Ethnic medicinal plant extracts can effectively reduce the VAS pain scores in women with primary dysmenorrhea and the proportion of people with pain. The effect is comparable to or even better than that of NSAIDs, with fewer side effects. Therefore, ethnic medicinal plant extracts can be considered as a clinical option to alleviate menstrual pain.
Collapse
Affiliation(s)
- Ying-Yu Zhong
- School of Public Health, Southern Medical University, Guangzhou, China; Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - He Wang
- Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yue-Yun Wang
- School of Public Health, Southern Medical University, Guangzhou, China; Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Li B, Zhao R, Jiang X, Liu C, Ma Y, Zhang H. Phytochemical investigation of Jie-Geng-Tang and regulatory role in the TNF-α pathway in mitigating pulmonary fibrosis using UPLC-Q-TOF/MS. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03755-8. [PMID: 39729206 DOI: 10.1007/s00210-024-03755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF). This study systematically explored the effects of JGT's water and 70% EtOH extracts in bleomycin (BLM)-induced PF models. In vitro, the 70% EtOH extract significantly reversed BLM-induced reductions in cell viability and apoptosis, whereas the water extract had limited impact. In vivo, the EtOH extract markedly reduced fibrosis markers, such as α-SMA and collagen-I, alleviating lung tissue damage and collagen deposition. UPLC-Q-TOF/MS analysis revealed that the EtOH extract contained a higher abundance of flavonoids compared to the water extract. Through network pharmacology analysis of the EtOH extract, four key flavonoids-apigenin, kaempferol, kaempferol 3-glucuronoside, and quercetin-were identified as crucial compounds. These flavonoids were found to reverse BLM-induced cell viability loss, with apigenin showing the most pronounced effect by modulating the TNF-α signaling pathway and inhibiting caspase-3 activation. Apigenin, as a primary active component derived from JGT, holds significant potential as a preventive agent against pulmonary fibrosis.
Collapse
Affiliation(s)
- Bingxin Li
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Ruining Zhao
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Xiaojie Jiang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Chang Liu
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Yun Ma
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Haijun Zhang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China.
| |
Collapse
|
4
|
Meng J, Zhang Z, Wang Y, Long L, Luo A, Luo Z, Cai K, Chen X, Nie H. The exploration of active components of 701 Dieda Zhentong patch and analgesic properties on chronic constriction injury rats. Purinergic Signal 2024:10.1007/s11302-024-10056-5. [PMID: 39495437 DOI: 10.1007/s11302-024-10056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
An increasing number of traditional Chinese medicine(TCM) have been confirmed to possess analgesic bioactivity. 701 Dieda Zhentong patch(701-DZP) which includes 14 kinds of TCMs exhibited excellent efficacy in alleviating back or leg pain after a soft-tissue injury. In this study, UPLC/MS was used to construct the fingerprint of 701-DZP and excavate the potential bioactive ingredients of it. 21 compounds were detected and identified in the fingerprint including 12 compounds that pass through the skin and 6 compounds observed in the plasma. Then, the role of 701-DZP in neuropathic pain(NPP) was assessed by network pharmacology and CCI rats. 701-DZP inhibited pain sensitization(MWT and TWL) and the release of inflammation mediators(IL-1β and IL-6) in CCI rats which were in keeping with the core targets of the PPI network. The results of IHC and Western blot showed that the expression of the P2X3 receptor in the DRG and SC of CCI rats was significantly reduced after the treatment with 701-DZP. Moreover, the 701-DZP down-regulated the level of phosphorylation of ERK1/2 MAPK instead of P38 MAPK in the DRG of CCI rats. In conclusion, this study has clarified 6 potential analgesic active compounds of 701-DZP and explored the analgesic properties, which may inhibit the expression of the P2X3 receptor to reduce the release of inflammatory mediators based on the ERK1/2 MAPK pathway to alleviate the NPP.
Collapse
Affiliation(s)
- Jun Meng
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China
| | - Zhenglang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yujie Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Lina Long
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China
| | - Anqi Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhenhui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Kexin Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xi Chen
- Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd. Baiyunshan Hejigong Pharmaceutical Factory, NO. 52 Xiaogang Dama Road, Xinshi Street, Baiyun District, Guangzhou, 510410, China.
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Mishra S, Shelke V, Dagar N, Lech M, Gaikwad AB. Molecular insights into P2X signalling cascades in acute kidney injury. Purinergic Signal 2024; 20:477-486. [PMID: 38246970 PMCID: PMC11377406 DOI: 10.1007/s11302-024-09987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
Acute kidney injury (AKI) is a critical health issue with high mortality and morbidity rates in hospitalized individuals. The complex pathophysiology and underlying health conditions further complicate AKI management. Growing evidence suggests the pivotal role of ion channels in AKI progression, through promoting tubular cell death and altering immune cell functions. Among these channels, P2X purinergic receptors emerge as key players in AKI pathophysiology. P2X receptors gated by adenosine triphosphate (ATP), exhibit increased extracellular levels of ATP during AKI episodes. More importantly, certain P2X receptor subtypes upon activation exacerbate the situation by promoting the release of extracellular ATP. While therapeutic investigations have primarily focused on P2X4 and P2X7 subtypes in the context of AKI, while understanding about other subtypes still remains limited. Whilst some P2X antagonists show promising results against different types of kidney diseases, their role in managing AKI remains unexplored. Henceforth, understanding the intricate interplay between P2X receptors and AKI is crucial for developing targeted interventions. This review elucidates the functional alterations of all P2X receptors during normal kidney function and AKI, offering insights into their involvement in AKI. Notably, we have highlighted the current knowledge of P2X receptor antagonists and the possibilities to use them against AKI in the future. Furthermore, the review delves into the pathways influenced by activated P2X receptors during AKI, presenting potential targets for future therapeutic interventions against this critical condition.
Collapse
Affiliation(s)
- Swati Mishra
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, 80336, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
6
|
Ma W, Liu T, Ogaji OD, Li J, Du K, Chang Y. Recent advances in Scutellariae radix: A comprehensive review on ethnobotanical uses, processing, phytochemistry, pharmacological effects, quality control and influence factors of biosynthesis. Heliyon 2024; 10:e36146. [PMID: 39262990 PMCID: PMC11388511 DOI: 10.1016/j.heliyon.2024.e36146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Background Scutellariae radix (SR) is the dried root of Scutellaria baicalensis Georgi. It has a long history of ethnic medicinal use, traditionally recognized for its efficacy in clearing heat, drying dampness, eliminating fire, removing toxins , stopping bleeding and tranquilizing fetus to prevent miscarriage. Clinically, it is used to treat cold, fever, migraine, hand-foot-and-mouth diseases, liver cancer and inflammatory diseases. Purpose The review aims to provide a comprehensive reference on the ethnobotanical uses, processing, phytochemistry, pharmacological effect, quality control and influence factors of biosynthesis for a deeper understanding of SR. Results and conclusion A total of 210 isolated components have been reported in the literature, including flavonoids and their glycosides, phenylpropanoids, phenylethanoid glycosides, phenolic acids, volatile components, polysaccharides and others. The extract of SR and its main flavonoids such as baicalin, baicalein, wogonin, wogonoside, and scutellarin showed antioxidant, anti-inflammatory, anti-tumor, antiviral, hepatoprotective, and neuroprotective effects. However, further studies are required to elucidate its mechanisms of action and clinical applications. The pharmacodynamic evaluation based on traditional efficacy should be conducted. Although various analytical methods have been established for the quality control of SR, there are gaps in the research regarding efficacy-related quality markers and the development of quality control standards for its processed products. The regulatory mechanisms of flavonoids biosynthesis remain to be explored while the influence of environmental and transcription factors on the biosynthesis have been studied. In conclusion, SR is a promising herbal medicine with significant potential for future development.
Collapse
Affiliation(s)
- Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
7
|
Gao L, Zhang AP, Fu L, Li QW, Qin XM, Zhao J. Huangqin decoction attenuates spared nerve injury (SNI)-induced neuropathic pain by modulating microglial M1/M2 polarization partially mediated by intestinal nicotinamide metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155594. [PMID: 38614040 DOI: 10.1016/j.phymed.2024.155594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms. PURPOSE The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization. METHODS The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells. RESULTS Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 μM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression. CONCLUSION In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China.
| | - Ai-Ping Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Lei Fu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Qian-Wen Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, University College London, UK, London.
| |
Collapse
|
8
|
Yi M, Zhang Z, Luo Z, Luo A, Zeng H, Li P, Wang T, Yang J, Nie H. PolyphyllinVI alleviates the spared nerve injury-induced neuropathic pain based on P2X3 receptor-mediated the release of inflammatory mediators. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117886. [PMID: 38355027 DOI: 10.1016/j.jep.2024.117886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PolyphyllinVI (PPⅥ) is the main bioactive component of Chonglou which is a traditional Chinese herbal with various effects, including antitumor, anti-inflammatory, and analgesia. AIM OF THE STUDY This study aimed to investigate the properties and mechanisms of the analgesia of PPⅥ by using neuropathic pain (NPP) mice. MATERIALS AND METHODS The potential targets and mechanisms of PPⅥ in alleviating NPP were excavated based on the network pharmacology. Subsequently, the construction of a spared nerve injury (SNI) mice model was used to evaluate the effect of PPⅥ on NPP and the expression of the P2X3 receptor. We identified the signaling pathways of PPⅥ analgesia by RNA sequencing. RESULTS The results of network pharmacology showed that BCL2, CASP3, JUN, STAT3, and TNF were the key targets of the analgesic effect of PPⅥ. PPⅥ increased the MWT and TWL of SNI mice and decreased the level of P2X3 receptors in the dorsal root ganglion (DRG) and spinal cord (SC). Additionally, PPⅥ reduced the release of pro-inflammatory mediators (TNF-α, IL-1β, and IL-6) in the DRG, SC, and serum. Based on the KEGG enrichment of differentially expressed genes (DEGs) identified by RNA-Seq, PPVI may relieve NPP by regulating the AMPK/NF-κB signaling pathway. Western blotting results showed that the AMPK signaling pathway was activated, followed by inhibition of the NF-κB signaling pathway. CONCLUSION PPⅥ increased the MWT and TWL of SNI mice maybe by inhibiting the expression of the P2X3 receptor and the release of inflammatory mediators. The properties of the analgesia of PPⅥ may be based on the AMPK/NF-κB pathway.
Collapse
Affiliation(s)
- Mengqin Yi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhenglang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhenhui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Anqi Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hekun Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peiyang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jingwen Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Peng Y, Zhou C. Network Pharmacology and Molecular Docking Identify the Potential Mechanism and Therapeutic Role of Scutellaria baicalensis in Alzheimer's Disease. Drug Des Devel Ther 2024; 18:1199-1219. [PMID: 38645989 PMCID: PMC11032720 DOI: 10.2147/dddt.s450739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Scutellaria baicalensis, a traditional Chinese medicinal herb renowned for its anti-inflammatory, antioxidant, and anti-tumor properties, has shown promise in alleviating cognitive impairment associated with Alzheimer's disease. Nonetheless, the exact neuroprotective mechanism of Scutellaria baicalensis against Alzheimer's disease remains unclear. In this study, network pharmacology was employed to explore the possible mechanisms by which Scutellaria baicalensis protects against Alzheimer's disease. Methods The active compounds of Scutellaria baicalensis were retrieved from the TCMSP database, and their corresponding targets were identified. Alzheimer's disease-related targets were obtained through searches in the GeneCards and OMIM databases. Cytoscape 3.6.0 software was utilized to construct a regulatory network illustrating the "active ingredient-target" relationships. Subsequently, the target genes affected by Scutellaria baicalensis in the context of Alzheimer's disease were input into the String database to establish a PPI network. GO analysis and KEGG analysis were conducted using the DAVID database to predict the potential pathways associated with these key targets. Following this, the capacity of these active ingredients to bind to core targets was confirmed through molecular docking. In vitro experiments were then carried out for further validation. Results A total of 36 active ingredients from Scutellaria baicalensis were screened out, which corresponded to 365 targets. Molecular docking results demonstrated the robust binding abilities of Baicalein, Wogonin, and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone to key target proteins (SRC, PIK3R1, and STAT3). In vitro experiments showed that the active components of Scutellaria baicalensis can inhibit STAT3 expression by downregulating the PIK3R1/SRC pathway in Neuro 2A cells. Conclusion In summary, these findings collectively suggest that Scutellaria baicalensis holds promise as a viable treatment option for Alzheimer's disease.
Collapse
Affiliation(s)
- Yutao Peng
- Department of Function, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Chanjuan Zhou
- Department of Clinical Psychology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| |
Collapse
|