1
|
Silveira DD, Farooq AJ, Wallace SJ, Lapolli FR, Nivala J, Weber KP. Structural and functional spatial dynamics of microbial communities in aerated and non-aerated horizontal flow treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156600. [PMID: 35691354 DOI: 10.1016/j.scitotenv.2022.156600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
A multiphasic study using structural and functional analyses was employed to investigate the spatial dynamics of the microbial community within five horizontal subsurface flow treatment wetlands (TWs) of differing designs in Germany. The TWs differed in terms of the depth of media saturation, presence of plants (Phragmites australis), and aeration. In addition to influent and effluent water samples, internal samples were taken at different locations (12.5 %, 25 %, 50 %, and 75 % of the fractional distance along the flow path) within each system. 16S rRNA sequencing was used for the investigation of microbial community structure and was compared to microbial community function and enumeration data. The microbial community structure in the unaerated systems was similar, but different from the aerated TW profiles. Spatial positioning along the flow path explained the majority of microbial community dynamics/differences within this study. This was mainly attributed to the availability of nutrients closer to the inlet which also regulated the fixed biofilm/biomass densities. As the amount of fixed biofilm decreased from the inlet to the TW outlets, structural diversity increased, suggesting different microbial communities were present to handle the more easily utilized/degraded pollutants near the inlet vs. the more difficult to degrade and recalcitrant pollutants closer to the outlets. This study also confirmed that effluent water samples do not accurately describe the microbial communities responsible for water treatment inside a TW, highlighting the importance of using internal samples for investigating microbial communities in TWs. The results of this study reinforce an existing knowledge gap regarding the potential for TW design modifications which incorporate microbial community spatial dynamics (heterogeneity). It is suggested that utilizing step-feeding could allow for improved water treatment within the same areal footprint, and modifications enhancing co-metabolic processes could assist in improving the treatment of more difficult to degrade or recalcitrant compounds such as micropollutants.
Collapse
Affiliation(s)
- D D Silveira
- Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, CEP 88040-900 Florianópolis, SC, Brazil
| | - A J Farooq
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - S J Wallace
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - F R Lapolli
- Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, CEP 88040-900 Florianópolis, SC, Brazil
| | - J Nivala
- INRAE, UR REVERSAAL, 5 rue de la Doua, CS 20244, 69625 Villeurbanne, France.
| | - K P Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| |
Collapse
|
2
|
Justin LD, Olukanni DO, Babaremu KO. Performance assessment of local aquatic macrophytes for domestic wastewater treatment in Nigerian communities: A review. Heliyon 2022; 8:e10093. [PMID: 36042728 PMCID: PMC9420480 DOI: 10.1016/j.heliyon.2022.e10093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/21/2022] [Accepted: 07/22/2022] [Indexed: 10/27/2022] Open
Abstract
The concept of treating wastewater before disposal is a global necessity. Recent mechanisms of doing this include the use of Constructed Wetland Systems (CWS). This technique is believed to be cost-effective and simpler compared to conventional methods. The application of this system is primarily dependent on the use of plants through the phytoremediation process. There is evidence of the potential of some locally found Nigerian aquatic plants such as water lettuce, water hyacinth and duckweed to be applicable for this purpose. However, there is little information on their performance level in remediating domestic wastewater. Thus, this review paper assessed the performance of these local macrophytes for domestic wastewater treatment and the potential of contributing the same in Nigerian communities. This was done by reviewing recent literature on the role of water lettuce, water hyacinth and duckweed, their occurrence and their efficiency in minimising different wastewater contaminants. Contaminant indicators such as total solids, electrical conductivity (EC), BOD, COD, dissolved oxygen, total phosphorous, total nitrogen, and heavy metals have been reduced using these macrophytes. The review indicates that the selected macrophytes do not only have the potential for wastewater purification but high efficiencies in doing so when applied appropriately in the Nigerian communities.
Collapse
Affiliation(s)
- Lazarus D Justin
- Department of Civil Engineering Covenant University, Ota, Ogun State, Nigeria
| | - David O Olukanni
- Department of Civil Engineering Covenant University, Ota, Ogun State, Nigeria
| | - Kunle O Babaremu
- Department of Mechanical Engineering, University of Johannesburg, South Africa.,Directorate of Pan African Universities for Life and Earth Institute, Ibadan, Oyo State, Nigeria
| |
Collapse
|
3
|
Silveira DD, Filho PB, Philippi LS, Cantão ME, Foulquier A, Bayle S, Delforno TP, Molle P. In-depth assessment of microbial communities in the full-scale vertical flow treatment wetlands fed with raw domestic wastewater. ENVIRONMENTAL TECHNOLOGY 2021; 42:3106-3121. [PMID: 31997722 DOI: 10.1080/09593330.2020.1723709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A multiphase study was proposed to examine microbial communities linked to the nitrogen cycle in the first stage of four full-scale French vertical flow treatment systems. To this end, denaturing gradient gel electrophoresis (DGGE) was performed for structural assessment and quantitative PCR (qPCR) to enumerate the abundance of ammonia-oxidizing (AOB). 16S rRNA sequencing was used to assess the taxonomic profile followed by putative assessment of functional genes. The samples were collected under different conditions, such as operational time (presence/absence of sludge layer on the surface of the filters), season (winter and summer), sampling depth (0, 15 and 30 cm) and operation cycle (rest and feed periods). A structural disparity was noted in the upper layers, whereas higher similarity at 30 cm was observed highlighting the effect of organic matter on bacterial diversity. The 7th rest day was highlighted by an apparent decline in the microbial community abundance. Additionally, qPCR indicated that the largest amount of AOB was found at 30 cm depth and during the feeding period. From the taxonomic profile, Mycobacterium, Acinetobacter, Flavobacterium, and Nitrospira were the most abundant genre found in all systems. The functional prediction results showed predicted genes linked to the denitrification process. The results suggested that operating time and season were responsible for the pattern of the microbial community behavior. This study allowed us to further understand the bacterial dynamics and to advance the idea of design modifications made in the first stage of the classical French system to improve nitrogen removal are promising.
Collapse
Affiliation(s)
- D D Silveira
- UFSC, Federal University of Santa Catarina, Florianópolis, Brazil
- INRAE, Villeurbanne, France
| | - P Belli Filho
- UFSC, Federal University of Santa Catarina, Florianópolis, Brazil
| | - L S Philippi
- UFSC, Federal University of Santa Catarina, Florianópolis, Brazil
| | - M E Cantão
- EMBRAPA SUÍNOS E AVES, Concórdia, Brazil
| | - A Foulquier
- CNRS, LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc Grenoble, France
| | - S Bayle
- LGEI, IMT Mines Ales, Univ. Montpellier, Ales, France
| | - T P Delforno
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, Brazil
| | | |
Collapse
|
4
|
Wang W, Han Y, Liu H, Zhang K, Yue Q, Bo L, Wang X. Pollutant removal performance of an integrated upflow-constructed wetland filled with haydites made of Al-based drinking water treatment residuals. ENVIRONMENTAL TECHNOLOGY 2017; 38:1111-1119. [PMID: 27541991 DOI: 10.1080/09593330.2016.1220428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study examined the pollutants removal performance of an integrated upflow-constructed wetland (IUCW) system in a 1.5 years' continuous operation. The average concentrations of chemical oxygen demand (COD), NH4-N, total nitrogen (TN), and total phosphorus (TP) in the effluent were 21.9, 1.47, 2.63, and 0.18 mg/L, respectively, which corresponded to 90.1%, 23.3%, 86.1%, and 97.2% removals from the raw water, respectively. The residual concentration of COD was 219 mg/L at start-up and decreased notably to 52.8 mg/L after 50 days of operation. NH4-N was difficult to remove because the average concentration of dissolved oxygen in the IUCW system was lower than 0.6 mg/L. In contrast, the residual concentrations of both TN and TP in the effluent were stable, with average removal rates as high as 89% and 99%, respectively, at start-up of the system. Changing the organic loading rates from 45.0 g/(m2·day) to 20.0 or 60.0 g/(m2·day) both inhibited the removal of TN. Further study showed that the removal of organic matter mainly occurred within 10-20 cm of the wetland cell. Considering its strong organic, nitrogen, and phosphate removal capacity, the IUCW system was determined to be effective in decentralized wastewater treatment.
Collapse
Affiliation(s)
- Wendong Wang
- a Department of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an , People's Republic of China
| | - Yu Han
- a Department of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an , People's Republic of China
| | - Hui Liu
- a Department of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an , People's Republic of China
| | - Ke Zhang
- a Department of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an , People's Republic of China
| | - Qiang Yue
- a Department of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an , People's Republic of China
| | - Longli Bo
- a Department of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an , People's Republic of China
| | - Xiaochang Wang
- a Department of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an , People's Republic of China
| |
Collapse
|